Let $ \omega=e^{2 \pi/3} $ be a primitive third root of unity. And let $ \phi= \frac{1+\sqrt{5}}{2} $ be the golden ratio.
The ring of integers $ \mathbb{Z}[\omega] $, called the Eisenstein integers, has class number 1 (it is a Euclidean domain and thus a PID). The ring of integers $ \mathbb{Z}[\phi] $ also has class number $ 1 $ (again is a Euclidean domain and thus a PID).
Does the ring $ \mathbb{Z}[\omega,\phi] $ have class number $ 1 $? I'm guessing not but I'm not sure.
Context and motivation: I'm interested in the subgroup of $ SU(3) $ isomorphic to $ 3.A_6 $ https://math.stackexchange.com/a/4535587/724711 its character values generate the ring $ \mathbb{Z}[\omega,\phi] $. Given this result https://groupprops.subwiki.org/wiki/Linear_representation_is_realizable_over_principal_ideal_domain_iff_it_is_realizable_over_field_of_fractions it would be interesting to know if this degree $ 3 $ character of $ 3.A_6 $ is defined over a PID or not, equivalently to know if $ \mathbb{Z}[\omega,\phi] $ has class number $ 1 $.