I'm trying to prove that $$\int_0^{\frac{\pi}{2}} J_0(x\cos\theta)\cos\theta d\theta =\frac{\sin x}{x}$$ where $x>0$ and $J_0$ is the Bessel function. With power series expansion, evaluating the integral and the binomial expansion I got
$$ \int_0^{\frac{\pi}{2}} J_0(x\cos\theta)\cos\theta d\theta = \sum_{k=0}^\infty \frac{(-1)^k}{(k!)^2} \frac{x^{2k}}{2^{2k}} \int_0^{\frac{\pi}{2}}\cos^{2k}\theta\cos\theta d\theta = \\ = \sum_{k=0}^\infty \frac{(-1)^k}{(k!)^2} \frac{x^{2k}}{2^{2k}} \sum_{j=0}^k \binom{k}{j}\frac{(-1)^j}{2j+1}$$
My goal is the power series expansion of $\frac{\sin x}{x}=\sum_{k=0}^\infty \frac{(-1)^kx^{2k}}{(2k+1)!}$ so, rearranging some terms, I need to prove that $$\sum_{j=0}^k\binom{k}{j}\frac{(-1)^j}{k!k!(2j+1)2^{2k}} = \frac{1}{(2k+1)!}$$
Wolfram confirms that this is true but I have no idea how to prove that. I tried to do some simplification $$\sum_{j=0}^k \frac{1}{(2k)!!}\frac{(-1)^j}{j!(k-j)!(2j+1)2^{k}}$$ From there I can use the fact that $(2k)!!(2k+1)!!=(2k+1)!$ to conclude but I still dont know if is it possible to prove that $$\sum_{j=0}^k \frac{(-1)^j}{j!(k-j)!(2j+1)2^{k}}=\frac{1}{(2k+1)!!}$$
Can you please help me?