Another variation. In order to show
\begin{align*}
\color{blue}{\prod_{q=1}^{n}\cos\left(\frac{2q-1}{2n+1}\pi\right)=(-1)^{\frac{n(n-1)}{2}}\frac{1}{2^n}}\tag{1}
\end{align*}
we consider the roots of unity $e^{\frac{2\pi i q}{2n+1}}, 0\leq q \leq 2n$ of the polynomial
\begin{align*}
p(z)=z^{2n+1}-1=\prod_{q=0}^{2n}\left(z-e^{\frac{2\pi i q}{2n+1}}\right)
\end{align*}
We obtain
\begin{align*}
-p(-z)&=z^{2n+1}+1=\prod_{q=0}^{2n}\left(z+e^{\frac{2\pi i q}{2n+1}}\right)\\
&=(z+1)\prod_{q=1}^{n}\left[\left(z+e^{\frac{2\pi i q}{2n+1}}\right)\left(z+e^{-\frac{2\pi i q}{2n+1}}\right)\right]\\
&=(z+1)\prod_{q=1}^n\left[z^2+\left(e^{\frac{2\pi i q}{2n+1}}+e^{-\frac{2\pi i q}{2n+1}}\right)z+1\right]\tag{2}
\end{align*}
Evaluating the polynomial $-p(-z)$ at $z=i$ in (2) gives
\begin{align*}
{\color{blue}{\frac{i^{2n+1}+1}{i+1}}}
&=\prod_{q=1}^n\left[2i\cos\left(\frac{2q}{2n+1}\,\pi\right)\right]\tag{3}\\
&\color{blue}{=2^ni^n\prod_{q=1}^n\cos\left(\frac{2q}{2n+1}\,\pi\right)}\tag{4}\\
&=2^ni^n\prod_{q=1}^n\left[-\cos\left(\pi-\frac{2q}{2n+1}\,\pi\right)\right]\\
&=2^n\left(-i\right)^n\prod_{q=1}^n\cos\left(\frac{2n+1-2q}{2n+1}\,\pi\right)\\
&\color{blue}{=2^n(-i)^n\prod_{q=1}^n\cos\left(\frac{2q-1}{2n+1}\,\pi\right)}\tag{5}\\
\end{align*}
In (3) we use the identity $\cos(z)=\frac{1}{2}\left(e^{iz}+e^{-iz}\right)$.
In (5) we change the order of multiplication: $q\to n-q+1$.
We conclude from (3) and (5)
\begin{align*}
\color{blue}{\prod_{q=1}^{n}\cos\left(\frac{2q-1}{2n+1}\,\pi\right)}
&=\frac{1+(-1)^ni}{1+i}\,\frac{1}{(-i)^n}\,\frac{1}{2^n}\\
&=\frac{1}{2}\,\left(1+(-1)^ni\right)(1-i)i^n\,\frac{1}{2^n}\\
&=\left(\frac{1+(-1)^n}{2}\,i^n-\frac{1-(-1)^n}{2}\,i^{n+1}\right)\frac{1}{2^n}\\
&\,\,\color{blue}{=(-1)^{\frac{n(n-1)}{2}}\,\frac{1}{2^n}}
\end{align*}
and the claim (1) follows.
Note:
The comparison of (4) with (5) also results in
\begin{align*}
{\color{blue}{\prod_{q=1}^{n}\cos\left(\frac{2q}{2n+1}\,\pi\right)}}
&=(-1)^{\frac{n(n-1)}{2}+n}\,\frac{1}{2^n}\\
&\,\,\color{blue}{=(-1)^{\frac{n(n+1)}{2}}\,\frac{1}{2^n}}
\end{align*}
and multiplication of both identities gives
\begin{align*}
{\color{blue}{\prod_{q=1}^{2n}\cos\left(\frac{q}{2n+1}\,\pi\right)}}
&=\left[\prod_{q=1}^{n}\cos\left(\frac{2q}{2n+1}\,\pi\right)\right]
\left[\prod_{q=1}^{n}\cos\left(\frac{2q-1}{2n+1}\,\pi\right)\right]\\
&=\left[(-1)^{\frac{n(n+1)}{2}}\,\frac{1}{2^n}\right]\left[(-1)^{\frac{n(n-1)}{2}}\,\frac{1}{2^n}\right]\\
&=(-1)^{n^2}\,\frac{1}{2^{2n}}\\
&\,\,\color{blue}{=(-1)^n\,\,\frac{1}{2^{2n}}}
\end{align*}
So some might suggest that $\prod_{r=1}^{7} \cos \left(\frac{r\pi}{15}\right)$ is similar.
– peterwhy Aug 16 '24 at 22:38