$$\sum^{n}_{i=1} {n \choose i}(-1)^{i+1}\left(\frac{1}{i}\right)=\sum^{n}_{i=1}\frac{1}{i}$$
I want to prove this inductively. For the sake of solving the question, I'm going to ignore formalities. Assume
$$\sum^{k}_{i=1} {k \choose i}(-1)^{i+1}(\frac{1}{i})=\sum^{k}_{i=1}\frac{1}{i}$$
Then
\begin{align} &\sum^{k+1}_{i=1} {k+1 \choose i}(-1)^{i+1}(\frac{1}{i})\\ =&\sum^{k+1}_{i=1} ({k \choose i}+{k \choose i-1})(-1)^{i+1}(\frac{1}{i}) \\ =&\sum^{k+1}_{i=1} {k \choose i}(-1)^{i+1}(\frac{1}{i})+\sum^{k+1}_{i=1} {k \choose i-1})(-1)^{i+1}(\frac{1}{i}) \\ =&\underbrace{\sum^{k}_{i=1} {k \choose i}(-1)^{i+1}(\frac{1}{i})}_{\text{Can the $k+1$ term be ignored since it's undefined?}}+\sum^{k}_{i=0} {k \choose i}(-1)^{i+2}(\frac{1}{i+1}) \\ =&\sum^{k}_{i=1}\frac{1}{i}+ \underbrace{\sum^{k}_{i=0} {k \choose i}(-1)^{i}(\frac{1}{i+1})}_{\text{How do I go about showing that this is $\frac{1}{k+1}$?}} \\ \end{align}
My intuition tells me that the underbraced sum has something to do with a binomial expansion, however that would require the $\frac{1}{1+i}$ term to have an exponent of $k-i$. Any tips on how to go further?