Find the value of $a$ and $b$ such that,
$$\lim_{x \ \to \ 0} \left(\frac{\tan(2x)}{x^{3}}+\frac{a}{x^{2}}+\frac{\sin(bx)}{x} \right)=0$$
I noticed that I can factor an $x^{2}$ such that,
$$\lim_{x \ \to \ 0} \left(\frac{1}{x^{2}}\left(\frac{\tan(2x)}{x}+a+x\sin(bx)\right) \right)=0 $$
And by properties of limits:
$$\lim_{x \ \to \ 0}\frac{1}{x^{2}} \cdot \lim_{x \ \to \ 0} \left(\frac{\tan(2x)}{x}+a+x\sin(bx) \right)=0$$
Now since $\lim_{x \ \to \ 0} \frac{1}{x^{2}}=\infty$, it means that $\lim_{x \ \to \ 0} \left(\frac{\tan(2x)}{x}+a+x\sin(bx) \right)=0$
From there we apply L'Hospital's rule to obtain the value of $a=-2$ and $b=-\frac{8}{3}$
What I'm asking is that did I do the right thing when concluding $\lim_{x \ \to \ 0} \left(\frac{\tan(2x)}{x}+a+x\sin(bx) \right)=0$ ? or did I messed up there...