Consider the following categories:
$\mathsf{Mon}$ of monoids
$\mathsf{Grp}$ of groups
$\mathsf{CMon}$ of commutative monoids
$\mathsf{CGrp}$ of commutative groups (more commonly known as $\mathsf{Ab}$)
Then we have the following commutative square of categories and inclusions:
$$ \require{AMScd} \begin{CD} \mathsf{CGrp} @> \iota_{\mathsf{Grp} \leftarrow \mathsf{CGrp}} >> \mathsf{Grp} \\ @V \iota_{\mathsf{CMon} \leftarrow \mathsf{CGrp}} VV @VV \iota_{\mathsf{Mon} \leftarrow \mathsf{Grp}} V \\ \mathsf{CMon} @>> \iota_{\mathsf{Mon} \leftarrow \mathsf{CMon}} > \mathsf{Mon} \\ \end{CD} $$
It is well-known that all the above inclusion functors admit left adjoints. Hence, we obtain the following commutative square containing the left adjoint functors to the inclusions:
$$ \begin{CD} \mathsf{CGrp} @< L_{\mathsf{CGrp} \leftarrow \mathsf{Grp}} << \mathsf{Grp} \\ @A L_{\mathsf{CGrp} \leftarrow \mathsf{CMon}} AA @AA L_{\mathsf{Grp} \leftarrow \mathsf{Mon}} A \\ \mathsf{CMon} @<< L_{\mathsf{CMon} \leftarrow \mathsf{Mon}} < \mathsf{Mon} \\ \end{CD} $$
My question is: Consider the monoid $(\operatorname{End}(\{1, \ldots, n\}), \circ)$ consisting of all set mappings $\{1, \ldots, n\} \to \{1, \ldots, n\}$. What happens to this monoid under the various left adjoints? Explicitely, what are the following objects?
$L_{\mathsf{Grp} \leftarrow \mathsf{Mon}}(\operatorname{End}(\{1, \ldots, n\}))$, the groupification of $\operatorname{End}(\{1, \ldots, n\})$
$L_{\mathsf{CMon} \leftarrow \mathsf{Mon}}(\operatorname{End}(\{1, \ldots, n\}))$, the abelianization of $\operatorname{End}(\{1, \ldots, n\})$
$L_{\mathsf{CGrp} \leftarrow \mathsf{Mon}}(\operatorname{End}(\{1, \ldots, n\}))$, the commutative group freely constructed from $\operatorname{End}(\{1, \ldots, n\})$
The reason I am interested in this is that I would like to do the following construction: Take a category $\mathcal{C}$ and construct the category $\mathcal{C}^{\operatorname{Com}}$ by forcing all endomorphism monoids to be commutative. In particular, I would suspect the endomorphism monoids of $\mathsf{FinSet}^{\operatorname{Com}}$ to be precisely the commutative monoids $L_{\mathsf{CMon} \leftarrow \mathsf{Mon}}(\operatorname{End}(\{1, \ldots, n\}))$.