This is my own attempt at a solution. Consider the generalized log-sine integrals defined by
$$\operatorname{Ls}^{(k)} _{~n} (\sigma) = -\int _0 ^\sigma \theta^k \log^{n-k-1} \left( 2\sin\frac{\theta}{2} \right) d\theta, \quad 0 \leq \theta \leq 2\pi$$
Now, let's look at the case $\sigma = \pi$. Consider the exponential generating function:
$$-\sum _{n \geq0, ~k\geq0} \operatorname{Ls}^{(k)} _{~n+k+1} (\pi) \frac{\lambda^n}{n!}\frac{(i \mu)^k}{k!} =\\= \int _0 ^\pi \sum _{n \geq 0} \frac{\lambda^n \log ^n\left( 2\sin \frac{\theta}{2} \right) }{n!} \sum_{k\geq0} \frac{(i\mu\theta)^k}{k!} d\theta = \int _0 ^\pi \left( 2\sin \frac{\theta}{2} \right)^\lambda e^{i\mu\theta}d\theta $$
Following J. Borwein and A. Straub, the right hand integral could be further simplified:
$$-\sum _{n \geq0, ~k\geq0} \operatorname{Ls}^{(k)} _{~n+k+1} (\pi) \frac{\lambda^n}{n!}\frac{(i \mu)^k}{k!} = i \sum_{n\geq0} \binom{\lambda}{n} \frac{(-1)^n e^{i\pi\frac{\lambda}{2}}-e^{i\pi\mu}}{\mu-\frac{\lambda}{2}+n}\tag{*}$$
This allows us to find the values of $\operatorname{Ls}^{(k)} _{~n} (\pi)$ by differentiating the right hand sum and setting $\lambda =0, \mu = 0$.
Now, let's define, and I am very sorry about this notation, the cosecant log-sine integrals by
$$\operatorname{cscLs}^{(k)} _{~n,~m} (\sigma) = -\int _0 ^\sigma \frac{\theta^{k+m}}{\left( 2\sin \frac{\theta}{2} \right) ^m} \log^{n-k-1} \left( 2\sin \frac{\theta}{2} \right) d\theta$$
These integrals are connected to the integrals in question by a binomial expansion of the $\log ^{n-k-1} \left (2 \sin \frac{\theta}{2} \right)$, like in the answer to this question by Raymond Manzoni. So, let's consider the latter funcitons first. We wish to find $\operatorname{cscLs}^{(0)} _{~n,~1} (\pi)$. We can study them in the same way, by considering their EGF:
$$-\sum _{n \geq0, ~k\geq0} \operatorname{cscLs}^{(k)} _{~n+k+1,~m} (\pi) \frac{\lambda^n}{n!}\frac{(i \mu)^k}{k!} =\\= \int _0 ^\pi \frac{\theta^m}{\left( 2\sin \frac{\theta}{2} \right)^m}\sum _{n \geq 0} \frac{\lambda^n \log ^n \left( 2\sin \frac{\theta}{2} \right) }{n!} \sum_{k\geq0} \frac{(i\mu\theta)^k}{k!} d\theta =\\= \int _0 ^\pi \frac{\theta^m}{\left( 2\sin \frac{\theta}{2} \right)^m} \left( 2\sin \frac{\theta}{2} \right)^\lambda e^{i\mu\theta}d\theta =(-i)^m \frac{\partial^m}{\partial\mu^m}\int _0 ^\pi \left( 2\sin \frac{\theta}{2} \right)^{\lambda-m} e^{i\mu\theta}d\theta$$
which means that from $(*)$, by setting $\lambda \rightarrow \lambda -m$, we get:
$$-\sum _{n \geq0, ~k\geq0} \operatorname{cscLs}^{(k)} _{~n+k+1,~m} (\pi) \frac{\lambda^n}{n!}\frac{(i \mu)^k}{k!} =(-i)^{m-1} \frac{\partial^m}{\partial\mu^m} \sum_{n\geq0} \binom{\lambda-m}{n} \frac{(-1)^n e^{i\pi\frac{\lambda-m}{2}}-e^{i\pi\mu}}{\mu-\frac{\lambda-m}{2}+n}$$
Again,we can now find the values of $\operatorname{cscLs}^{(k)} _{~n, ~m} (\pi)$ by differentiating the right hand sum with respect to $\mu$ and $\lambda$ and then setting $\lambda =0, \mu = 0$.