4

In a derivation I am working on, I have encountered an integral of the form \begin{equation} f_n=\int_0^{\infty} e^{-r^2}L_n\left(2r^2\right)\log\left|L_n\left(2r^2\right)\right|\, rdr \end{equation} with $L_n(r)$ the $n$-th Laguerre polynomial. Any ideas on how to attack it?

Mathematica gives for the first integrals: \begin{align} f_0&=0\\ f_1&=-1+e^{-\frac{1}{2}}Ei\left(\frac{1}{2}\right)\\ f_2&=4-\sum_{m=\pm}e^{-\frac{\lambda_{m}}{2}}\lambda_{m}\, Ei\left(\frac{\lambda_{m}}{2}\right) \end{align} where $Ei(x)$ is the exponential integral function and $\lambda_{\pm}=2\pm\sqrt{2}$ are the roots of $L_2(r)$.

STU
  • 372

1 Answers1

2

It took some effort, but I found a closed expression.

First, we use the close form and roots of the Laguerre polynomials to express the integral as: \begin{equation} f_n=\frac{1}{2}\sum_{q=0}^n\sum_{\lambda\in\textrm{Roots}(L_n)}\left(\begin{array}&n\\q\end{array}\right)\frac{(-2)^q}{q!}\int_0^\infty e^{-r^2} r^{2q+1}\log\left[\frac{(2r^2-\lambda)^2}{\lambda^2}\right]\,dr \end{equation} To carry out this integral, we integrate by parts and make use of the change of variable $x=r^2-\frac{\lambda}{2}$: \begin{multline} \int_0^\infty e^{-r^2} r^{2q+1}\log\left[\frac{(2r^2-\lambda)^2}{\lambda^2}\right]\,dr=4\int_0^\infty \frac{r\, \Gamma\left(q+1,r^2\right)}{2r^2-\lambda}\, dr\\ =2q!\sum_{l=0}^q\frac{1}{l!}\int_0^\infty\frac{r^{2l+1}e^{-r^2}}{r^2-\frac{\lambda}{2}}\, dr=q!\sum_{l=0}^q\frac{e^{-\frac{\lambda}{2}}}{l!}\int_{-\frac{\lambda}{2}}^\infty \frac{e^{-x}}{x} \left(x+\frac{\lambda}{2}\right)^ldx \end{multline} Using the binomial formula, we have: \begin{multline} \int_{-\frac{\lambda}{2}}^\infty \frac{e^{-x}}{x} \left(x+\frac{\lambda}{2}\right)^ldx=\sum_{k=0}^l \int_{-\frac{\lambda}{2}}^\infty e^{-x}\left(\begin{array}&l\\ k\end{array}\right)\left(\frac{\lambda}{2}\right)^{l-k}x^{k-1}\, dx\\ =-\left(\frac{\lambda}{2}\right)^l Ei\left(\frac{\lambda}{2}\right)+\sum_{k=1}^l\left(\begin{array}&l\\ k\end{array}\right)\left(\frac{\lambda}{2}\right)^{l-k}\Gamma\left(k,-\frac{\lambda}{2}\right)\\ =-\left(\frac{\lambda}{2}\right)^l Ei\left(\frac{\lambda}{2}\right)+ e^{\frac{\lambda}{2}}\sum_{k=1}^l\sum_{s=0}^{k-1}\frac{l!\,(-1)^s}{s!\,(l-k)!\,k}\left(\frac{\lambda}{2}\right)^{l-k+s} \end{multline} Putting all the pieces together, we finally obtain: \begin{multline} f_n=\sum_{q=0}^n\sum_{\lambda\in\textrm{Roots}(L_n)}\sum_{l=0}^q\left(\begin{array}&n\\q\end{array}\right)\left[\frac{(-1)^{q+1}\lambda^l\, 2^{q-l-1}}{l!}e^{-\frac{\lambda}{2}}Ei\left(\frac{\lambda}{2}\right)+\sum_{k=1}^l\sum_{s=0}^{k-1}\frac{(-1)^{s+q}\,\lambda^{l-k+s}\,2^{q-l-s+k-1}}{s!\,(l-k)!\,k}\right] \end{multline}

STU
  • 372