I am wondering if $\mathbb{Q}(\alpha,\beta,\gamma,\delta,\eta)\subseteq\mathbb{Q}(e^{2\pi i/n})$ for some integer $n$ ?
where
$\alpha=\frac{1+\sqrt{17}}{2}$
$\beta=\frac{1-\sqrt{17}}{2}$
$\gamma=-1+2\cos\left(\frac{\pi}{9}\right)$
$\delta=-1-\cos\left(\frac{\pi}{9}\right)+\sqrt{3}\sin\left(\frac{\pi}{9}\right)$
$\eta=-1-\cos\left(\frac{\pi}{9}\right)-\sqrt{3}\sin\left(\frac{\pi}{9}\right)$
These special values come from the roots of characteristic polynomial $$(x-3)(x-2)^{18}x^{17}(x^2-x-4)^9(x^3+3x^2-3)^{16}$$ of the Biggs–Smith graph. It seems hard to determine if it is in the very large cyclotomic field.