We seek to show that
$${2n\choose n}^{-1} \sum_{k=1}^n \frac{2^k}{k} {2n-k\choose n-k}
= \sum_{k=1}^n \frac{1}{2k-1}.$$
Working with the binomial coefficient in the sum on the LHS we get
$$\frac{(2n)^{\underline n}}{(2n)^{\underline k}}
\frac{1}{(n-k)!}
= {2n\choose n} {n\choose k} {2n\choose k}^{-1}$$
and hence we have
$$\sum_{k=1}^n {n\choose k} \frac{2^k}{k}
{2n\choose k}^{-1}.$$
Recall from MSE
4316307 the
following identity which was proved there: with $1\le k\le n$
$$\frac{1}{k} {n\choose k}^{-1}
= [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$
Apply to our sum to get
$$[v^{2n}] \log\frac{1}{1-v} (v-1)^{2n}
\sum_{k=1}^n {n\choose k} 2^k (v-1)^{-k}.$$
Here we get two pieces, the first is
$$- [v^{2n}] \log\frac{1}{1-v} (v-1)^{2n}
= - \sum_{q=1}^{2n} \frac{(-1)^q}{q} {2n\choose q}.$$
and the second
$$[v^{2n}] \log\frac{1}{1-v} (v-1)^{2n}
\left[1+\frac{2}{v-1}\right]^n
\\ = [v^{2n}] \log\frac{1}{1-v} (v-1)^{n} (v+1)^n
= \sum_{q=1}^n \frac{(-1)^q}{2q} {n\choose q}.$$
Sum with two instances appearing
We clearly require
$$\sum_{q=1}^m \frac{(-1)^q}{q} {m\choose q}.$$
With this in mind we introduce
$$f(z) = (-1)^m m! \frac{1}{z} \prod_{r=0}^m \frac{1}{z-r}.$$
which has the property that for $1\le q\le m$
$$\;\underset{z=q}{\mathrm{res}}\; f(z)
= (-1)^m m! \frac{1}{q} \prod_{r=0}^{q-1} \frac{1}{q-r}
\prod_{r=q+1}^m \frac{1}{q-r}
\\ = (-1)^m m! \frac{1}{q} \frac{1}{q!} \frac{(-1)^{m-q}}{(m-q)!}
= \frac{(-1)^q}{q} {m\choose q}.$$
With the residue at infinity being zero we have that our desired
sum is contribution from minus the residue at zero, which gives
$$(-1)^m m! \left. \prod_{r=1}^m \frac{1}{z-r}
\sum_{r=1}^m \frac{1}{r-z} \right|_{z=0}
= -H_m.$$
Collecting the pieces
Apply to the two pieces to get
$$\frac{1}{2} (-H_n) + H_{2n}
= - \sum_{q=1}^n \frac{1}{2q} + \sum_{q=1}^{2n} \frac{1}{q}
= \sum_{k=1}^n \frac{1}{2k-1}.$$
This is the claim and we may conclude.