By the Lucenaposition's answer, $\int_{0}^{2023}\frac{2}{x+e^x}dx<2$.
So, $\lfloor \int_{0}^{2023}\frac{2}{x+e^x}dx \rfloor=0$ or $\lfloor \int_{0}^{2023}\frac{2}{x+e^x}dx \rfloor=1$.
My Lemma:
Let $f(x):=\frac{e^x}{x}$ for $x>0$.
Then, $\min f=e$.
Proof of my lemma:
$f'(x)=e^x(\frac{x-1}{x^2})$.
$f'(x)>0$ if $x>1$.
$f'(x)<0$ if $0<x<1$.
So, $\min f=f(1)=e$.
Let $a:=\frac{2e}{1+e}$.
Then, $\frac{a}{2-a}=e$.
So, $\frac{e^x}{x}\geq\frac{a}{2-a}$ for $x>0$.
So, $(2-a)e^x\geq ax$ for $x\geq 0$.
So, $2e^x\geq a(x+e^x)$ for $x\geq 0$.
So, $\frac{2}{x+e^x}\geq a\frac{1}{e^x}$ for $x\geq 0$.
My Lemma 2:
$a(1-e^{-2023})\geq 1$.
Proof of my lemma 2:
$e=e^1=1+\frac{1}{1!}+\dots\geq 2$.
So, $e^{2023}=e\cdot e^{2022}\geq 2\cdot e^{2022}\geq e^{2022}+2$.
So, $e\geq 1+2e^{-2022}$.
So, $2e-2e^{-2022}\geq 1+e$.
So, $2e(1-e^{-2023})\geq 1+e$.
So, $\frac{2e}{1+e}(1-e^{-2023})=a(1-e^{-2023})\geq 1$.
$\int_{0}^{2023} a\frac{1}{e^x}dx=a(1-e^{-2023})\geq 1$.
And $\int_{0}^{2023}\frac{2}{x+e^x}dx\geq\int_{0}^{2023} a\frac{1}{e^x}dx=a(1-e^{-2023})$.
So, $\lfloor \int_{0}^{2023}\frac{2}{x+e^x}dx \rfloor=1$.