Let $a_1,\cdots,a_r\geqslant0$ and $b_1,\cdots,b_s\geqslant0$ such that $r+s=n$ and $\{x_1,\cdots,x_n\}=\{a_1,\cdots,a_r\}\cup\{-b_1,\cdots,-b_s\}$.
Let $A=a_1+\cdots+a_r$ and $B=b_1+\cdots+b_s$.
We have to prove that :
$$\sum_{1\leqslant i,j\leqslant r}(a_i+a_j)+\sum_{1\leqslant i,j\leqslant s}(b_i+b_j)+2\sum_{i=1}^r\sum_{j=1}^s\vert a_i-b_j\vert\geqslant n(A+B)$$
ie :
$$2\sum_{i=1}^r\sum_{j=1}^s\vert a_i-b_j\vert\geqslant(s-r)(A-B)\tag{$\star$}$$
Four cases arise, depending on the signs of the differences $s-r$ and $A-B$. If those signs are opposite, then $(\star)$ is obvious. Let us assume that $s\geqslant r$ and $A\geqslant B$. We can see that :
$$2\sum_{i=1}^r\sum_{j=1}^s\vert a_i-b_j\vert\geqslant2\sum_{i=1}^r\sum_{j=1}^s(a_i-b_j)=2(sA-rB)$$
and this last quantity is greater than $(s-r)(A-B)$ because :
$$\begin{eqnarray}2(sA-rB)-(s-r)(A-B)&=&(s+r)A+(s-3r)B\\
&\geqslant&(s+r)B+(s-2r)B\\
&=&2(s-r)B\\
&\geqslant&0\end{eqnarray}$$
The last case ($s\leqslant r$ and $A\leqslant B$) is similar.