This question is a followup from my previous post based on the Euler-Maclaurin formula: How to find the correct constant term with Euler-Maclaurin formula, $\sum_{j=1}^n j\log j$.
This time I am working with $s_n=\sum_{k=1}^n \tfrac{1}{k+1/2}$. By the Euler-Malcuarin formula we have $$\begin{align*} s_n & = \int_1^n \frac{dt}{t+1/2} +\frac{1}{2n+1}+\frac{1}{3}-\int_1^n \frac{B_1(t-\lfloor t\rfloor)}{(t+1/2)^2}\ dt \\[3mm] & = \log\left(n + {1 \over 2}\right) - \log\left(3 \over 2\right) + \frac{1}{2n+1}+\frac{1}{3} \\[3mm] & \phantom{=\,\,}-\int _1^{+\infty} \frac{B_1(t-\lfloor t\rfloor)}{(t+1/2)^2}\ dt +\int _n^{+\infty} \frac{B_1(t-\lfloor t\rfloor)}{(t+1/2)^2}\ dt.\label{1}\tag{1} \end{align*}$$ Since the periodic Bernoulli polynomial is a continuous and bounded function $$ \int_n^{+\infty}\frac{B_1(t-\lfloor t\rfloor)}{(t+1/2)^2}\ dt = O(1/n)$$ as $n\to +\infty$. Now applying the Euler-Maclaurin formula to $\zeta (s,1/2)=\sum_{k=1}^\infty \frac{1}{(k+1/2)^s}$ we have \begin{align*} \zeta(s,1/2) & = \int _1^{+\infty} \frac{dt}{(t+1/2)^s}+\frac{1}{2}\left(\frac{2}{3}\right)^{s} \\[3mm] & -s\int_1^{+\infty}\frac{B_1(t-\lfloor t\rfloor)}{(t+1/2)^{s+1}}\ dt \\[5mm] & = \frac{(3/2)^{1-s}}{s-1}+\frac{1}{2}\left(\frac{2}{3}\right)^s \\[3mm] & -s\int_1^{+\infty}\frac{B_1(t-\lfloor t\rfloor)}{(t+1/2)^{s+1}}\ dt\label{2}\tag{2} \end{align*} for $\text{Re}(s)>1$. So the value of the $\int_1^{+\infty}$ integral in (\ref{1}) can be found via setting $s=1$ in (\ref{2}), but there is a singularity there. What do I do?