Here I show that
For any bounded function function $f$ on $[0,1]$ that is continuous at $0$
$$\frac{1}{\log n}\sum^n_{k=1}\frac1k f(\frac{k}{n})\xrightarrow{n\rightarrow\infty}f(0)$$
Recall that there is a constant $\gamma$ such that
\begin{align}
0\leq \sum^n_{k=1}\frac1k-\int^n_1 \frac1x\,dx - \gamma \leq \frac1n\tag{1}\label{one}
\end{align}
Denote $s_n=\sum^n_{k=1}\frac1k$. From \eqref{one} we have that for $1\leq m<n$
\begin{align}
-\frac1m+\log(n/m)\leq s_n-s_m\leq \log(n/m)+\frac1n\tag{2}\label{two}
\end{align}
Since
$$\sum^n_{k=1}\frac1kf(\frac{k}{n})=
\sum^n_{k=1}\frac1k\big(f(\frac{k}{n})-f(0)\big) + f(0)\sum^n_{k=1}\frac1k,
$$
it is enough to consider the case $f(0)=0$. Suppose $|f(x)|\leq B$ for all $x\in[0,1]$. Given $\varepsilon>0$, choose $0<\delta<1$ such that $|f(x)|<\varepsilon$ whenever $|x|<\delta$.
and for $n>\delta^{-1}$, define $K_n=\lfloor n\delta\rfloor$. Then
\begin{align}
\left|\frac{1}{\log n}\sum^n_{k=1}\frac1kf(\frac{k}{n})\right|&\leq\frac{1}{\log n}\sum^{K_n}_{k=1}\frac1k\big|f(\frac{k}{n})\big|+\frac{1}{\log n}\sum^n_{k=K_n+1}\frac1k\big|f(\frac{k}{n})\big|\\
&<\varepsilon\frac{s_{K_n}}{\log n}+B\frac{s_n-s_{K_n}}{\log n}
\end{align}
Since $\delta^{-1}\leq \frac{n}{K_n}<\frac{n\delta^{-1}}{n-\delta^{-1}}$, and $K_n\xrightarrow{n\rightarrow\infty}\infty$, it follows from \eqref{one} and \eqref{two} that
\begin{align}
\frac{s_{K_n}}{\log n}&\xrightarrow{n\rightarrow\infty}1\\
\frac{s_n-s_{K_n}}{\log n}&\xrightarrow{n\rightarrow\infty}0
\end{align}
Therefore
$$\limsup_n\Big|\sum^n_{k=1}\frac1kf(k/n)\Big|\leq\varepsilon$$
and the desired conclusion follows.