$$ I = \int_{0}^{\infty} \frac{\tanh\left(x\right)\operatorname{sech}\left(x\right)}{x}\,{\rm d}x $$
I started with the substitution $\cosh x=t \implies [0,\infty] \to[1,\infty]$
$$I=\int_1^\infty \frac{1}{t^2 \ln(t+\sqrt{t^2-1})}\,dt$$
then the substitution $t+\sqrt{t^2-1}=z\implies [1,\infty] \to[1,\infty]$
$$I=\int_1^\infty \frac{2(z^2-1)}{(z^2+1)^2\ln(z)}\,dz$$
I am stuck on this integral and I have tried some more substitutions but they seem to make the integral harder to evaluate, I am interested to see how to solve this.