Let $x_n \in (0;1)$ be a positive real root of this function: $$f_n(x) = \frac{1}{x} + \frac{1}{x-1}+\ldots+\frac{1}{x-n}$$ with positive integer $n \geq 2$
Find $\lim x_n$
I claimed that $f_n(x) = 0$ has only one positive real root $x_n\in(0;1)$ for each positive integer $n$
From the equation: $$\frac{1}{x_n} = \frac{1}{1-x_n} + \frac{1}{2-x_n} + \ldots + \frac{1}{n-x_n} > \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n} > \frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} = \frac{n+1}{n}$$
Thus:
$$0 < x_n < \frac{n}{n+1}$$
But the RHS can't apply Squeeze Theorem, anyone help me please!