Let's make some calculations that will help us out later,
$$J=\int \frac{1}{(1 + 8 x^2) \sqrt{1 - x^2}}\,dx$$
$$= \frac13\int \frac{3}{(1 + 8 x^2) \sqrt{1 - x^2}}\,dx$$
$$=\frac13\int \frac{3(1-x^2)+3x^2}{(1 - x^2+9x^2) \sqrt{1 - x^2}}\,dx$$
$$=\frac13\int \frac{3\sqrt{1-x^2}+\frac{3x^2}{\sqrt{1-x^2}}}{\left(1 +\frac{9x^2}{1-x^2}\right)({1 - x^2})}\,dx$$
$$=\frac13\int \frac{1}{1 +\left(\frac{3x}{\sqrt{1-x^2}}\right)^2}\,d\left({\frac{3x}{\sqrt{1-x^2}}}\right)$$
$$=\frac13 \arctan \left(\frac{3x}{\sqrt{1-x^2}}\right)$$
$$\int_0^1 \frac{\ln(x)}{(1 + 8 x^2) \sqrt{1 - x^2}}\,dx=-\frac13\int_0^1 \frac1x \arctan \left(\frac{3x}{\sqrt{1-x^2}}\right) \,dx$$
Coming back to $I$, After Integrating by parts, we get,
$$I=-\frac13\int_0^1 \frac1x \arctan \left(\frac{3x}{\sqrt{1-x^2}}\right) \,dx$$
Consider, $$I(a)=-\frac13\int_0^1 \frac1x \arctan \left(\frac{3ax}{\sqrt{1-x^2}}\right) \,dx$$
$$\frac{\partial}{\partial a}I(a)=-\int_0^1 \frac{\sqrt{1-x^2}}{1-x^2+9a^2x^2}\,dx$$
$$=\frac{1}{9a^2-1}\int_0^1 \frac{\sqrt{1-x^2}(1-9a^2)}{1-x^2+9a^2x^2}\,dx$$
$$=\frac{1}{9a^2-1}\int_0^1 \frac{(1-x^2+9a^2x^2)-9a^2}{(1-x^2+9a^2 x^2)(\sqrt{1-x^2})}\,dx$$
$$=\frac{1}{9a^2-1}\int_0^1 \frac{1}{\sqrt{1-x^2}}\,dx+\frac{1}{1-9a^2}\int_0^1 \frac{9a^2}{(1-x^2+9a^2 x^2)(\sqrt{1-x^2})}\,dx$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{1}{1-9a^2}\int_0^1 \frac{9a^2}{(1-x^2+9a^2 x^2)(\sqrt{1-x^2})}\,dx$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{1}{1-9a^2}\int_0^1 \frac{9a^2+9a^2x^2-9a^2x^2}{(1-x^2)\left(1+\frac{9a^2 x^2}{1-x^2}\right)(\sqrt{1-x^2})}\,dx$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{1}{1-9a^2}\int_0^1 \frac{9a^2(1-x^2)+9a^2x^2}{(1-x^2)\left(1+\frac{9a^2 x^2}{1-x^2}\right)(\sqrt{1-x^2})}\,dx$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{1}{1-9a^2}\int_0^1 \frac{9a^2\sqrt{1-x^2}+\frac{9a^2x^2}{\sqrt{1-x^2}}}{(1-x^2)\left(1+\left(\frac{3ax}{\sqrt{1-x^2}}\right)^2\right)}\,dx$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{3a}{1-9a^2}\int_0^1 \frac{3a\sqrt{1-x^2}+(2x)(3ax)\left(\frac{1}{2\sqrt{1-x^2}}\right)}{1+\left(\frac{3ax}{\sqrt{1-x^2}}\right)^2}\,dx$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{3a}{1-9a^2}\int_0^1 \frac{1}{1+\left(\frac{3ax}{\sqrt{1-x^2}}\right)^2}\,d\left(\frac{3ax}{\sqrt{1-x^2}} \right)$$
$$=\frac{\pi}{2(9a^2-1)}+\frac{3a\pi}{2(1-9a^2)}=\frac{(3a-1)\pi}{2(1-9a^2)}$$
$$\int_0^1 dI(a)=\frac{\pi}{2}\int_0^1\frac{(3a-1)}{1-9a^2}\,da$$
$$I(1)\underset{I(0)=0}=\frac{\pi}{2}\int_0^1\frac{(3a-1)}{(1-9a^2)}\,da=-\frac{\pi}{2}\int_0^1\frac{(3a-1)}{(9a^2-1)}\,da$$
$$I(1)=-\frac{\pi}{2}\int_0^1 \frac{1}{3a+1}\,da=-\frac{\pi}{3}\ln(2)$$
Therefore,
$$\color{red}{\int_0^1 \frac{\ln(x)}{(1 + 8 x^2) \sqrt{1 - x^2}}\,dx=-\frac{\pi}{3}\ln(2)}$$