Key Idea $\!\!$ if $f(x)$ has a root $\,x\equiv \color{0}b \pmod {\!p^2}\:\!$ that's $\rm\color{#c00}{repeated}$ $\!\bmod{p},\,$ i.e. $\,\color{#c00}{f'(b)\equiv 0}\pmod{\!p},\,$ then it lifts to $\,p\,$ roots $\,x\equiv b,\,b\!+\!\color{#0af}p,\,b\!+\!\color{#0af}{2p},\ldots \pmod{\!p^2}\,$ since, by Taylor's Theorem
$$\bmod p^2\!:\ f(b\!+\!\color{#0af}{kp})\equiv f(b)+\color{#c00}{f'(b)}\,kp\equiv f(b)\equiv 0,\,\ {\rm by}\,\ \color{#c00}{p\mid f'(r)}\ \ $$
OP root $\rm\color{#c00}{repeats}\bmod 3\,$ by $\,x^2\!+\!ax\!+\!1 \equiv (x\!-\!b)(x\!-\!b^{-1})\,$ so $\, b\not\equiv 0\Rightarrow b\equiv \pm1\Rightarrow b^{-1}\equiv b,\,$ thus repeated root $\,x\equiv b\pmod{\!3}\,$ lifts to $\:\!3\:\!$ roots $\,b,\,b\!+\!\color{#0af}3,\,b\!+\!\color{#0af}6 \pmod{\!3^2}$. $\bf\small \ QED$
Below is an alternative direct proof. See Hensel Lifting for generalizations of the above.
$\!\bmod 9\!:\ f(x)\equiv (x\!-\!b)(x\!-\!c)\,\Rightarrow\, \bmod 3\!:\ bc\equiv\overbrace{f(0)\equiv 1}^{\rm hypothesis}\,$ $\Rightarrow \color{#c00}{\overbrace{b\equiv c}^{\rm repeated}}\,(\equiv \pm1),\,$ so by the Lemma: $\,f(n)\equiv 0\pmod{\!9}^{\phantom{|^{|^|}}}\!\!\!\!\!$ $\iff\! n\equiv b\pmod{\!3}\!$ $\iff\! n\equiv b,\,b\!+\!\color{#0af}3,\,b\!+\!\color{#0af}6\pmod{\!9}$.
Lemma $\ $ If $\,f(x)\equiv (x\!-\!b)(x\!-\!c)\,\pmod{\!p^2}\ $ and $\,p\,$ is prime then
$$f(n)\equiv 0\!\!\!\pmod{\!p^2} \iff
\begin{cases}
n\equiv b\ \ \ \,\pmod{\!p}, & {\rm if}\ \ \color{#c00}{p\mid b\!-\!c \ \rm\ \, (repeats)} \\[.3em]
n\equiv b,\color{#0af}c\pmod{\!p^2}, & {\rm if}\ \ \color{darkorange}{p\nmid b\!-\!c}\\
\end{cases}\!\!\!\!\!\! $$
Proof $\ $ Note that $\, p\mid p^2\mid f(n)\!=\!(n\!-\!b)(n\!-\!c)\:\!$ $\overset{p\ \rm prime}\Longrightarrow\:\! p\mid n\!-\!b\ $ or $\ p\mid n\!-\!\color{#0af}c$.
${\rm If}\,\ n=\overbrace{p\color{}k\!+\!b\,\ \rm then}^{\,\textstyle {\rm pk\!\color{#0af}{+\!c}\,\ \rm same}}$ $\,p^2\mid f(n)\!=\!p\color{darkorange}k\,(pk\!+\!\color{#c00}{b\!-\!c})\!\!\underset{p\ \rm prime\!\!\!}\iff\, \color{#c00}{p\mid b\!-\!c}\!\!\underbrace{\ {\rm or}\ \ \color{darkorange}{p\mid k}}_{n\,\equiv\, b\!\pmod{\!p^2}}$