Decompose into disjoint unions as follows:
\begin{align}
S &= (S \setminus T) \cup (S \cap T) \\
\overline{S} &= (\overline{S} \setminus \overline{T}) \cup (\overline{S} \cap \overline{T}) \\
T &= (T \setminus S) \cup (S \cap T) \\
\overline{T} &= (\overline{T} \setminus \overline{S}) \cup (\overline{S} \cap \overline{T}) \\
S \cup T &= (S \setminus T) \cup (S \cap T) \cup (T \setminus S) \\
\overline{S \cap T} &= (\overline{S} \setminus \overline{T}) \cup (\overline{S} \cap \overline{T}) \cup (\overline{T} \setminus \overline{S})
\end{align}
Then
\begin{align}
& \operatorname{cap}(S\cup T,\overline{S\cup T}) + \operatorname{cap}(S\cap T,\overline{S\cap T}) \\
&= \operatorname{cap}(S\cup T,\overline{S}\cap \overline{T}) + \operatorname{cap}(S\cap T,\overline{S\cap T}) \\
&= \operatorname{cap}(S\setminus T,\overline{S}\cap \overline{T}) + \operatorname{cap}(S\cap T,\overline{S}\cap \overline{T}) + \operatorname{cap}(T\setminus S,\overline{S}\cap \overline{T}) \\
&+ \operatorname{cap}(S\cap T,\overline{S} \setminus \overline{T})
+ \operatorname{cap}(S\cap T,\overline{S} \cap \overline{T})
+ \operatorname{cap}(S\cap T,\overline{T} \setminus \overline{S})
\\
&\le \operatorname{cap}(S\setminus T,\overline{S}\cap \overline{T})
+ \operatorname{cap}(S\cap T,\overline{S}\cap \overline{T})
+ \operatorname{cap}(T\setminus S,\overline{S}\cap \overline{T}) \\
&+ \operatorname{cap}(S\cap T,\overline{S} \setminus \overline{T})
+ \operatorname{cap}(S\cap T,\overline{S} \cap \overline{T})
+ \operatorname{cap}(S\cap T,\overline{T} \setminus \overline{S}) \\
&+ \color{red}{\operatorname{cap}(S\setminus T,\overline{S}\setminus \overline{T}) + \operatorname{cap}(T\setminus S,\overline{T}\setminus \overline{S})}
\\
&=
\operatorname{cap}(S\setminus T,\overline{S}\setminus \overline{T})
+ \operatorname{cap}(S\setminus T,\overline{S}\cap \overline{T})
+ \operatorname{cap}(S\cap T,\overline{S} \setminus \overline{T})
+ \operatorname{cap}(S\cap T,\overline{S}\cap \overline{T}) \\
&+ \operatorname{cap}(T\setminus S,\overline{T}\setminus \overline{S})
+ \operatorname{cap}(T\setminus S,\overline{S}\cap \overline{T})
+ \operatorname{cap}(S\cap T,\overline{T} \setminus \overline{S})
+ \operatorname{cap}(S\cap T,\overline{S} \cap \overline{T})
\\
&= \operatorname{cap}(S,\overline S) + \operatorname{cap}(T,\overline {T})
\end{align}