In this manuscript the authors propose the following conjecture (1) \begin{align*} \sum_{k=0}^{4i+3} \binom{4i+3}{k}_i &= 2^{4i+2} \end{align*} where $\binom{4i+3}{k}_i$ is iterated rascal number defined as \begin{align*} \binom{n}{k}_i &= \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m} \end{align*} So that conjecture (1) can be expressed in terms of binomial coefficients (2) $$ \sum_{k=0}^{4i+3} \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{m} = 2^{4i+2} $$
My approach
To prove the conjecture (1) I utilize relations in terms of binomial coefficients and iterated rascal numbers. Recall the row sums property of binomial coefficients \begin{equation*} \sum_{k=0}^{4i+3} \binom{4i+3}{k} = 2^{4i+3} \end{equation*} If conjecture (1) is true, then it is also true that \begin{equation*} \sum_{k=0}^{4i+3} \binom{4i+3}{k} - \sum_{k=0}^{4i+3} \binom{4i+3}{k}_i = 2^{4i+2} \end{equation*} because $2^{4i+3} - 2^{4i+2} = 2^{4i+2}$.
Expanding both sums applying Vandermonde convolution $\binom{a+b}{r} = \sum_{m=0}^{r} \binom{a}{m} \binom{b}{r-m}$ we get \begin{align*} 2^{4i+2} &= \sum_{k=0}^{4i+3} \sum_{m=0}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} - \sum_{k=0}^{4i+3} \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{k-m}\\ 2^{4i+2} &= \sum_{k=0}^{4i+3} \sum_{m=0}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} - \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{k-m} \end{align*} Note that $\binom{n}{k} \geq \binom{n}{k}_i$ for each $n,k,i$. Now we have three possible relations between $i,k$: $k < i$, $k = i$, $k > i$.
If $k < i$ then inner sums equal zero \begin{equation*} \sum_{m=0}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} - \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{k-m} = 0 \end{equation*} Because $\binom{k}{k-m}$ in the sum over $i$ is zero for all $m > k$.
If $k = i$ obviously \begin{equation*} \sum_{m=0}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} - \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{k-m} = 0 \end{equation*}
If $k > i$ then \begin{equation*} \sum_{m=0}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} - \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{k-m} = \sum_{m=i+1}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} \end{equation*} Thus, we have to prove that \begin{equation*} 2^{4i+2} = \sum_{k} \sum_{m=i+1}^{k} \binom{4i+3-k}{m} \binom{k}{k-m} \end{equation*} Let $m$ to iterate from 0 \begin{equation*} 2^{4i+2} = \sum_{k} \sum_{m=0}^{k} \binom{4i+3-k}{i+1+m} \binom{k}{i+1+m} \end{equation*} Although, above equation almost exactly matches Vandermonde identity, it cannot be applied directly. Even it were applied, the result would disprove the main conjecture giving $2^{4i+3}$ as row sums. My validations show that indeed conjecture true for $i \leq 100$. Therefore, propose the following conjecture:
Conjecture 2.1 For every $i$ \begin{equation*} 2^{4i+2} = \sum_{k} \sum_{m=0}^{k} \binom{4i+3-k}{i+1+m} \binom{k}{i+1+m} \end{equation*} Above conjecture validated up to $i=100$.
Mathematica scripts I used to validate all conjectures can be found on GitHub
Statement of the problem: It can be either a tip, a correction of my proof, or your own perspective