First of all, for all fixed $x$, $\sum_{i \geqslant n + 1} \left|\frac{x^i}{i!}\right| = \mathrm{O}\left(\frac{1}{n!}\right)$ by Taylor inequality hence the sum is absolutely convergent. Then, notice that $\sin\left(\frac{\pi n}{2}\right) = 1$ if $n \equiv 1 \ [4]$, $-1$ if $n \equiv 3\ [4]$, $0$ if $n \equiv 0\ [2]$ so the sum simplifies as,
$$
A = \sum_{k \geqslant 0} (-1)^k(2k + 1)\sum_{i \geqslant 2k + 2} \frac{x^i}{i!} = \sum_{i \geqslant 2} \frac{x^i}{i!}\sum_{k = 0}^{\left\lfloor \frac{i - 2}{2} \right\rfloor} (-1)^k(2k + 1).
$$
We can exchange the sums by absolute convergence. Then, I let you check by induction that for all integer $j$,
$$
\sum_{k = 0}^{j - 1} (-1)^k(2k + 1) = -(-1)^jj.
$$
Therefore,
$$
A = -\sum_{i \geqslant 2} \frac{x^i}{i!}(-1)^{\left\lfloor \frac{i}{2} \right\rfloor}\left\lfloor \frac{i}{2} \right\rfloor = A_{\mathrm{even}} + A_{\mathrm{odd}},
$$
where $A_{\mathrm{even}}$ (resp. $A_{\mathrm{odd}}$) are computing by summing on all the $i \geqslant 2$ even (resp. odd). We have,
\begin{align*}
A_{\mathrm{even}} & = -\sum_{i \geqslant 2|i \textrm{ even}} \frac{x^i}{i!}(-1)^{\left\lfloor \frac{i}{2} \right\rfloor}\left\lfloor \frac{i}{2} \right\rfloor\\
& = -\sum_{j \geqslant 0} \frac{x^{2j + 2}}{(2j + 2)!}(-1)^{j + 1}(j + 1)\\
& = \frac{x}{2}\sum_{j \geqslant 0} (-1)^j\frac{x^{2j + 1}}{(2j + 1)!}\\
& = \frac{x}{2}\sin(x).
\end{align*}
I let you compute $A_{\mathrm{odd}}$, it is the same idea. You have to make appear the series of $\sin$ and $\cos$. You should also verify my computations, it is easy to make mistakes with this kind of calculus.