4

Find the value of $A$ where $$A=\sum_{n=1}^{\infty}\left(n\sin\left(\frac{\pi n}{2}\right)\left(e^x-1-\frac{x}{1!}-\frac{x^2}{2!}-\cdots-\frac{x^n}{n!}\right)\right)$$

By using the expansion of $e^x$, I have simplified the expression into $$A=\sum_{n=1}^{\infty}\left(n\sin\left(\frac{\pi n}{2}\right)\left(\sum_{i=n+1}^{\infty}\frac{x^i}{i!}\right)\right)$$

After this I am having a hard time in exploring further into this problem.

Any help is greatly appreciated.

River Li
  • 49,125

3 Answers3

5

First of all, for all fixed $x$, $\sum_{i \geqslant n + 1} \left|\frac{x^i}{i!}\right| = \mathrm{O}\left(\frac{1}{n!}\right)$ by Taylor inequality hence the sum is absolutely convergent. Then, notice that $\sin\left(\frac{\pi n}{2}\right) = 1$ if $n \equiv 1 \ [4]$, $-1$ if $n \equiv 3\ [4]$, $0$ if $n \equiv 0\ [2]$ so the sum simplifies as, $$ A = \sum_{k \geqslant 0} (-1)^k(2k + 1)\sum_{i \geqslant 2k + 2} \frac{x^i}{i!} = \sum_{i \geqslant 2} \frac{x^i}{i!}\sum_{k = 0}^{\left\lfloor \frac{i - 2}{2} \right\rfloor} (-1)^k(2k + 1). $$ We can exchange the sums by absolute convergence. Then, I let you check by induction that for all integer $j$, $$ \sum_{k = 0}^{j - 1} (-1)^k(2k + 1) = -(-1)^jj. $$ Therefore, $$ A = -\sum_{i \geqslant 2} \frac{x^i}{i!}(-1)^{\left\lfloor \frac{i}{2} \right\rfloor}\left\lfloor \frac{i}{2} \right\rfloor = A_{\mathrm{even}} + A_{\mathrm{odd}}, $$ where $A_{\mathrm{even}}$ (resp. $A_{\mathrm{odd}}$) are computing by summing on all the $i \geqslant 2$ even (resp. odd). We have, \begin{align*} A_{\mathrm{even}} & = -\sum_{i \geqslant 2|i \textrm{ even}} \frac{x^i}{i!}(-1)^{\left\lfloor \frac{i}{2} \right\rfloor}\left\lfloor \frac{i}{2} \right\rfloor\\ & = -\sum_{j \geqslant 0} \frac{x^{2j + 2}}{(2j + 2)!}(-1)^{j + 1}(j + 1)\\ & = \frac{x}{2}\sum_{j \geqslant 0} (-1)^j\frac{x^{2j + 1}}{(2j + 1)!}\\ & = \frac{x}{2}\sin(x). \end{align*} I let you compute $A_{\mathrm{odd}}$, it is the same idea. You have to make appear the series of $\sin$ and $\cos$. You should also verify my computations, it is easy to make mistakes with this kind of calculus.

Cactus
  • 9,220
5

Some thoughts. (We need to prove that the function is differentiable etc.)

We have $$A'(x) = A(x) + \sum_{n=1}^{\infty}\left(n\sin\left(\frac{\pi n}{2}\right)\cdot \frac{x^n}{n!}\right) = A(x) + x\cos x.$$ Solve the ODE to obtain $$A(x) = - \frac12 x\cos x + \frac12 \sin x + \frac12 x\sin x + c\mathrm{e}^x.$$

Since $A(0) = 0$, we have $c = 0$. Thus, $$A(x) = - \frac12 x\cos x + \frac12 \sin x + \frac12 x\sin x.$$

River Li
  • 49,125
4

Another way to solve the problem is to use:

How to integrate $ \int x^n e^x dx$?

or the regularized gamma function to find:

$$\sum_{j=n+1}^\infty\frac{x^j}{j!}=\frac{e^x}{n!}\int_0^x e^{-t}t^ndt$$

This gives:

$$A(x)=\int_0^xe^{x-t}\sum_{n=1}^\infty \frac{t^n}{(n-1)!}\sin\left(\frac{\pi n}2\right)dt$$

The inner sum can be interpreted as $e^x$’s Maclaurin series if writing $\sin(\frac{\pi n}2)$ in complex form, so we are left with:

$$A(x)=\int_0^xe^{x-t} t\cos(t) dt=\frac12x\sin(x)-\frac12x\cos(x)+\frac12\sin(x)$$

Тyma Gaidash
  • 13,576