Let
$$\underset{\mathbb{R}^n}{\text{min}} f(x) $$ with \begin{equation} f (x) = \frac12 x^T Qx - c^T x + \frac{1}{2\mu}(a^T x - \beta)^2 , \end{equation} in which $c$ and $a$ are $n$ vectors, Q an $n\times n$ symmetric and positive-definite matrix, $\beta \in \mathbb{R}$, and $\mu > 0$.
Find the gradient of this function, $\nabla f(x)$. Then find $\phi(t)=f(x_0-t\cdot\nabla f(x_0) )$ and $\phi'(t)$.
With
Then we have that \begin{equation} -\nabla f(x)=-\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1}\\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} \end{equation}
I have the given expression, \begin{equation} \phi(t)= \frac{1}{2}\bigg(x_0 - t\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1}\\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} \bigg)^TQ\bigg(x_0 - t\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1}\\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} \bigg)-c^T+\frac{1}{2\mu}(a^T\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1}\\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}-\beta)^2 \end{equation}
where $a$ and $c$ are $n$-dimensional vectors and $Q$ is an $n$-dimensional matrix and $\beta$ is a real parameter.
The variable is $t$. How do I find $\phi'(t)$?
I thought of the matrices and vectors as constants, since they have no $t$ variables inside, and therefore use the regular rule $f(x)=ax+b \to f'(x)=a$.
Is that correct, or am I misintrepreting the structure of the function $f$?
Thanks