How can I find, or what is a good reference for: $${}_nC^0 + {}_nC^1 + {}_nC^2 + \cdots + {}_nC^n = 2^n$$
I could write References [1] Binomial sums, Binomial Sums -- from Wolfram MathWorld
but I need something that looks more professional.
How can I find, or what is a good reference for: $${}_nC^0 + {}_nC^1 + {}_nC^2 + \cdots + {}_nC^n = 2^n$$
I could write References [1] Binomial sums, Binomial Sums -- from Wolfram MathWorld
but I need something that looks more professional.
As @randomguy had said in the comments, you can use the Binomial expansion of $(1+x)^n$
If you cannot find it, here's the answer
Substituting $x=1$ in the hint, it yields
$(1+1)^n=C^n_0+C^n_1+C^n_2+....C^n_n $
$\Rightarrow 2^n=C^n_0+C^n_1+C^n_2+....C^n_n$
As we know from Binomial Theorm that,
$(1+x)^n={}^nC_0 \ x+{}^nC_1 \ x^2+{}^nC_2 \ x^3+\cdots+{}^nC_n \ x^n$
$\therefore (1+1)^n={}^nC_0 \ (1)+{}^nC_1 \ (1)^2+{}^nC_2 \ (1)^3+\cdots+{}^nC_n \ (1)^n$
$\Rightarrow 2^n={}^nC_0+{}^nC_1+{}^nC_2+\cdots+{}^nC_n$