-1

How can I find, or what is a good reference for: $${}_nC^0 + {}_nC^1 + {}_nC^2 + \cdots + {}_nC^n = 2^n$$

I could write References [1] Binomial sums, Binomial Sums -- from Wolfram MathWorld

but I need something that looks more professional.

Mocean
  • 25

2 Answers2

3

As @randomguy had said in the comments, you can use the Binomial expansion of $(1+x)^n$

If you cannot find it, here's the answer

Substituting $x=1$ in the hint, it yields
$(1+1)^n=C^n_0+C^n_1+C^n_2+....C^n_n $
$\Rightarrow 2^n=C^n_0+C^n_1+C^n_2+....C^n_n$

1

As we know from Binomial Theorm that,

$(1+x)^n={}^nC_0 \ x+{}^nC_1 \ x^2+{}^nC_2 \ x^3+\cdots+{}^nC_n \ x^n$

$\therefore (1+1)^n={}^nC_0 \ (1)+{}^nC_1 \ (1)^2+{}^nC_2 \ (1)^3+\cdots+{}^nC_n \ (1)^n$

$\Rightarrow 2^n={}^nC_0+{}^nC_1+{}^nC_2+\cdots+{}^nC_n$

Fetray
  • 94