As @ParamanandSingh commented. We will use the formula
$${}_2F_1\left({a},{b};{a-b+1};{z}\right)=(1-z)^{1-2b}(1+z)^{2b-1-a}{}_2F_1\left({\frac{a-2b+1}{2}},{\frac{a-2b+2}{2}};{a-b+1};{\frac{4z}{(1+z)^2}}\right)$$
The proof of the above formula could be seen in this math overflow post.
Let $a=\frac{1}{2}$ and $b=\frac{1}{2}$, $z=k^2$, we immediately get
$$\frac{2}{\pi} K(k)=\frac{1}{\sqrt{1+k^2}} {}_2F_1 \left(\frac{1}{4},\frac{3}{4};1;\frac{4k^2}{(1+k^2)^2}\right)$$
While the quadratic transformation $x\mapsto 4x(1-x)$ gives
$${}_2F_1\left(a,b;\frac{a+b+1}{2};x\right)={}_2F_1\left(\frac{a}{2},\frac{b}{2};\frac{a+b+1}{2};4x(1-x)\right)$$
let $a=\frac{1}{4}$, $b=\frac{3}{4}$:
$${}_2F_1\left(\frac{1}{4},\frac{3}{4};1;x\right)={}_2F_1\left(\frac{1}{8},\frac{3}{8};1;4x(1-x)\right)$$
But $V(z)={}_3F_2\left(\frac{1}{4},\frac{1}{2},\frac{3}{4};1,1;z^2\right)$
and by Clausen formula:
$$V(z)={}_2F_1^2\left(\frac{1}{8},\frac{3}{8};1;z^2\right)$$
Letting $x=\frac{4k^2}{(1+k^2)^2}$ gives
$$\frac{2}{\pi}\sqrt{1+k^2}K(k)=\sqrt{V\left(\frac{4k(1-k^2)}{(1+k^2)}\right)}$$
Which is the desired result.
Also we note that the result is only valid for $|k|\leq \sqrt{2}-1$ due to bijectivity.
By that we can just let $a=b=\frac{1}{2}$
– Sep 28 '24 at 01:20