It seems that the assumption $f_n\xrightarrow{n\rightarrow\infty}f$ in measure is not needed. Here we prove that
If $f_n\xrightarrow{n\rightarrow\infty}f$ in $L_r(\mu)$, then $\lim_n\|f_n\|_r=\|f\|_r$.
For $r\geq1$ the conclusion follows from $|\|f\|_r-\|f_n\|_r|\leq\|f-f_n\|_r$ since $f\mapsto\|f\|_r=\Big(\int_X|f|^r\Big)^{1/r}$ is a norm on $L_p(\mu)$ (identification mod 0 is done).
For $0< r<1$ we use the fact that $d_r(f, g)=\int_X|f-g|^r\,d\mu$ is a (complete) translation invariant metric on $L_r(\mu)$. The second assumption is equivalent to
$$d_r(f_n,f)=\int_X|f_n-f|^r\,d\mu\xrightarrow{n\rightarrow\infty}0$$
The triangle inequality yields
$$d_r(f_n,0)\leq d_r(f_n,f)+d_r(f,0)\xrightarrow{n\rightarrow\infty}d_r(f,0)$$
whence we obtain
$$\limsup_n\int_X|f_n|^r\,d\mu\leq \int_X|f|^r\,d\mu.$$
An application of Fatou's Lemma yields
\begin{align}
d_r(f,0)&=\int_X|f|^r\,d\mu\leq \liminf_n\int_X|f_n|^r\,d\mu\\
&=\liminf_n d_r(f_n,0)\leq\liminf_n(d_r(f_n,f)+d_r(f,0))\\
&=d_r(f,0)
\end{align}
Putting this together we have that $\lim_nd_r(f_n,0)$ exists and
$$\int_X|f|^r\,d\mu=d_r(f,0)=\lim_nd_r(f_n,0)=\lim_n\int_X|f_n|^r\,d\mu$$
Perhaps of more interest is the converse statement, that is,
If $f_n$ converges to $f$ in probability and $\|f\|_r\xrightarrow{n\rightarrow\infty}\|f\|_r$, then $\|f-f_n\|_r\xrightarrow{n\rightarrow\infty}0$.
For $r\geq1$ the conclusion follows from a result due to Riesz, M.:
For $r\geq1$, if $f_n\xrightarrow{n\rightarrow\infty} f$ $\mu$-a.s. and $\|f\|_r\xrightarrow{n\rightarrow\infty}\|f\|_r$, then $\|f-f_n\|_r\xrightarrow{n\rightarrow\infty}0$.
A proof of this result is given in this MSE posting.
In the present case, it is enough that every subsequence of $(f_n)$ admits a subsequent $(f_{n_k})$ which converges to $f$ in $L_r(\mu)$. Observe that as $f_n\xrightarrow{n\rightarrow\infty}f$ in $\mu$-measure, any subsequence $f_{n'}$ of $f_n$ has a subsequence $f_{n_k}$ which converges to $f$ $\mu$-a.s. Hence, by Riesz theorem, $\|f_{n_k}-f\|_r\xrightarrow{k\rightarrow\infty}0$.
What is new, perhaps, is the case $0<p<1$. We prove here the following result:
For $0<r<1$, if $f_n\xrightarrow{n\rightarrow\infty} f$ $\mu$-a.s. and $\|f\|_r\xrightarrow{n\rightarrow\infty}\|f\|_r$, then $\|f-f_n\|_r\xrightarrow{n\rightarrow\infty}0$.
Proof: Recall the inequality $(a+b)^r\leq a^r+b^r$ for $a,b\geq0$ and $0<r<1$. Then
$$|f-f_n|^r\leq (|f|+|f_n|)^r\leq |f|^r+|f_n|^r$$
that is
$$ g_n=|f|^r+|f_n|^r - |f-f_n|^r\geq0$$
An application of Fatou's lemma yields
$$ \int_X 2|f|^r\,d\mu\leq \liminf_n\int_X\big(|f|^r+|f_n|^r-|f-f_n|^r\big)\,d\mu
$$
Consequently $$\limsup_n\int_X|f-f_n|^r\,d\mu\leq0\qquad\blacksquare$$
The conclusion follows as in the case $r\geq1$, that is, it is enough to show that every subsequence of $(f_n)$ admits a subsequence $(f_{n_k})$ which converges to $f$ in $L_r(\mu)$.