Consider a cone of radius $r$ and height $h$. Define $m=\frac{h}{r}$. Its equation is given below.
\begin{align} z(x,y)=-m\sqrt{x^2+y^2}+h\hspace{5mm}z\geqslant0 \end{align}
Let $O$ represent the center of the cone's base (the origin).
Let $A$ represent the apex of the cone $(0,0,h)$.
Let $P_j$ represent an arbitrary point on the cone.
Define $\phi_j$ as $\angle AOP_j$.
What is the mean value of $\phi_j$ assuming a uniform distribution of points across the manifold?
I believe the answer may be $\frac{\pi}{2}-\arctan\left(\frac{h}{2r}\right)$.
My approach:
Let's define $\bar \phi$ as the average value of $\phi_j$. It can be calculated as shown below:
\begin{align} \bar \phi&=\cfrac{\int\limits_0^{\pi/2}\cfrac{\phi d\phi}{\tan\phi+m}}{\int\limits_0^{\pi/2}\cfrac{d\phi}{\tan\phi+m}} \end{align}
We'll break this up into the following two integrals:
\begin{align} I_1&=\int\limits_0^{\pi/2}\cfrac{\phi d\phi}{\tan\phi+m} \\ I_2&=\int\limits_0^{\pi/2}\cfrac{d\phi}{\tan\phi+m} \end{align}
These are two very challenging integrals. I have solved $I_2$, as shown below. However, I have not been able to solve $I_1$.
Solution for $I_2$
\begin{align} I_2&=\int\limits_0^{\pi/2}\cfrac{d\phi}{\tan\phi+m} \end{align}
First, we'll multiply the integrand by $\frac{\sec^2\phi}{1+\tan^2\phi}$.
\begin{align}I_2&=\int\limits_0^{\pi/2}\cfrac{\sec^2\phi d\phi}{(\tan\phi+m)(1+\tan^2\phi)} \end{align}
Next, we'll substitute.
\begin{align} u&=\tan\phi \\ du&=\sec^2\phi d\phi \\ [0,\pi/2)&\mapsto[0,\infty) \\ \\ \implies I_2=\int\limits_0^\infty\frac{du}{(u+m)(u^2+1)} \end{align}
Now we must do a partial fraction decomposition.
\begin{align} \frac{A}{u+m}+\frac{Bu+C}{u^2+1}&=\frac{1}{(u+m)(u^2+1)} \\ A(u^2+1)+(Bu+C)(u+m)&=1 \\ \end{align}
Case 1: $u=-m$
\begin{align} A(m^2+1)&=1 \\ A&=\frac{1}{m^2+1} \end{align}
Case 2: $u=0$
\begin{align} A+Cm&=1 \\ \frac{1}{m^2+1}+Cm&=1 \\ Cm&=\frac{m^2+1}{m^2+1}-\frac{1}{m^2+1} \\ C&=\frac{m}{m^2+1} \end{align}
Case 3: $u=-2m$
\begin{align} A(4m^2+1)+(-2B+C)(-m)&=1 \\ \frac{4m^2+1}{m^2+1}+2Bm^2-\frac{m^2}{m^2+1}&=1 \\ 2Bm^2+\frac{3m^2+1}{m^2+1}&=1 \\ 2Bm^2&=\frac{m^2+1}{m^2+1}-\frac{3m^2+1}{m^2+1} \\ B&=-\frac{1}{m^2+1} \end{align}
Let $k=\frac{1}{m^2+1}$, then rewrite the coefficients.
\begin{align} A&=k \\ B&=-k \\ C&=km \end{align}
Rewriting $I_2$ accordingly,
\begin{align} I_2&=\int\limits_0^\infty\frac{k}{u+m}-\frac{ku-km}{u^2+1} du \\ I_2&=\lim_{n\to\infty}k\ln|u+m|\bigg\rvert_0^n-\frac{k}{2}\int\limits_0^\infty\frac{2u}{u^2+1} du+km\int\limits_0^\infty\frac{du}{u^2+1} \\ I_2&=\lim_{n\to\infty}\left[k\ln|u+m|\bigg\rvert_0^n-\frac{k}{2}\ln|u^2+1|\bigg\rvert_0^n+km\arctan(u)\bigg\rvert_0^n\right] \\ \end{align}
To match the coefficients of the first two valuations, note $\ln|x|=\frac{1}{2}\ln x^2$.
\begin{align} I_2&=\lim_{n\to\infty}\left[\frac{k}{2}\left(\ln(u+m)^2-\ln(u^2+1)\right)\bigg\rvert_0^n+\frac{km\pi}{2}\right] \\ I_2&=\frac{k}{2}\lim_{n\to\infty}\left[\ln\left(\frac{u^2+2mu+m^2}{u^2+1}\right)\bigg\rvert_0^n+m\pi\right] \\ I_2&=\frac{k}{2}\left(m\pi-2\ln|m|\right) \end{align}
Substituting $k=\frac{1}{m^2+1}$,
\begin{align} I_2&=\frac{m\pi-2\ln|m|}{2(m^2+1)} \end{align}
Substituting $m=\frac{h}{r}$,
\begin{align} I_2&=\frac{\frac{\pi h}{r}-2\ln\left|\frac{h}{r}\right|}{\left(\frac{h}{r}\right)^2+1} \\ I_2&=\cfrac{\pi rh+2r^2\ln\left(\frac{h}{r}\right)}{2(r^2+h^2)} \end{align}
My Question
I believe $I_1$ is only solvable through nonelementary methods--I have tried integrating by parts but the resulting integrand looks daunting. I would like a solution to that integral OR a different approach to solving the problem.
Thank you.
