6

I am trying to show that for $a,b,c>0,\;abc=1:$

$$\underbrace{\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)}}_{X}\geq \frac{3}{2}$$

This problem is from the Zhautykov Olympiad of 2008.

Attempt:

If $X\geq \frac{3}{2}$ is satisfied for all $a,b,c$ satisfying the initial conditions then by letting $a\mapsto b$ and $b\mapsto a$, the following inequality must also be satisfied:

$$\underbrace{\frac{1}{a(a+b)}+\frac{1}{b(b+c)}+\frac{1}{c(c+a)}}_{Y}\geq\frac{3}{2}$$

The reasoning can be reversed, thus $X\geq\frac{3}{2}\iff Y\geq\frac{3}{2}$. Now, in any case:

$$X+Y=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq 3\sqrt[3]{\frac{1}{(abc)^2}}=3$$

By AM-GM. Hence either $X\geq \frac{3}{2}$ or $Y\geq \frac{3}{2}$ is true, and therefore they are both true.

Is this logic valid? It seems too easy.

Daz
  • 61

2 Answers2

4

Write $X$ as $X=f(a,b,c)$. Then $Y=f(b,a,c)$. What you are saying first is $${\rm if}\;\; \left(\forall a,b,c\;:\; f(a,b,c)\geq\frac32\right)\;\;{\rm then}\;\; \left(\forall a,b,c\;:\; f(b,a,c)\geq \frac 32\right) $$ which is quite correct.

Then what you show is $$\forall a,b,c\;:\; \left( f(a,b,c)\geq\frac32\;\;{\rm or}\;\; f(b,a,c)\geq\frac32\right) $$

But here you are in trouble: one cannot interchange the $\forall$ and the "or" without any further information.

Etienne
  • 13,978
  • 1
  • 29
  • 60
2

No, your reasoning is wrong. The inequality

$$X+Y \geq 3$$ is ok. But you did not proof that if $ a,b,c \gt 0 \land abc=1 \land X(a,b,c) \ge \frac{3}{2}$ for a special triple $(a,b,c)$ then $Y(a,b,c) \ge \frac{3}{2}$ for the same triple (and vice versa) but you only proved that if $ a,b,c \gt 0 \land abc=1 \land X(a,b,c) \ge \frac{3}{2}$ for all triples $(a,b,c)$ then $Y(a,b,c) \ge \frac{3}{2}$ (and vice versa) which is only a change in notation. So you assume $X(a,b,c) \ge \frac{3}{2}$ to prove $X(a,b,c) \ge \frac{3}{2}$

miracle173
  • 11,359