I'm having a hard time proving:
$\lim_{n\to\infty} \frac{1}{2} \sqrt[n]{(n+1)(n+2)...(2n)}= \frac{4}{e}$
any tips?
The book I found this exercise in says I should use the following property: If a sequence $a_n$ has only strictly positive terms and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=a$, then $\lim_{n\to\infty} \sqrt[n]{a_n}=a$
