Considering $x>0$ the equation is equivalent to
\begin{equation}
{\log\left(\frac{y}{x}\right)}+\frac{1}{2}(y-\frac{1}{y})=0
\end{equation}
Transforming the equation with the change of variable $y\rightarrow1-1/z$ and multiplying by z, we obtain the equation
\begin{equation}
z\log\left(\frac{1}{x}\left(1-\frac{1}{z}\right)\right)+\frac{1-2z}{2\left(z-1\right)}=0
\end{equation}
or
\begin{equation}
2z(z-1)\log\left(\frac{1}{x}\left(1-\frac{1}{z}\right)\right)+1-2z=0
\end{equation}
Defining the function $f(z)=2z(z-1)\log\left(\frac{1}{x}\left(1-\frac{1}{z}\right)\right)+1-2z$ and applying the Burniston-Siewert method to solve transcendental
equations to this equation we obtain
\begin{equation}
y=1-\frac{1}{z_{0}},\quad z_{0}=\frac{\log\left(x\right)-4}{2\log\left(x\right)}+m
\end{equation}
where
\begin{equation}
m=\frac{1}{\pi}{\displaystyle \int\limits _{0}^{1}}\arctan\left[\frac{1-2t}{2\pi t(t-1)}+\frac{1}{\pi}\log\left(\frac{1-t}{xt}\right)\right]\,dt
\end{equation}
(Another representation is)
\begin{equation}
m=\frac{1}{\pi}{\displaystyle \int\limits _{-\infty}^{\infty}}\frac{e^{t}}{\left(1+e^{t}\right)^{2}}\arctan\left[\frac{t-\sinh\left(t\right)-\log\left(x\right)}{\pi}\right]\,dt
\end{equation}
Putting everything into a single expression, the inverse for the function $f(y)=ye^{\frac{1}{2}(y-\frac{1}{y})}$ is
\begin{equation}
f^{-1}(x)=1-\left[\frac{\log\left(x\right)-4}{2\log\left(x\right)}+\frac{1}{\pi}{\displaystyle \int\limits _{0}^{1}}\arctan\left[\frac{1-2t}{2\pi t(t-1)}+\frac{1}{\pi}\log\left(\frac{1-t}{xt}\right)\right]\,dt\right]^{-1}
\end{equation}
With this expression an approximation for values close to 1 will be
$$ \begin{align} f^{-1}(x) & \sim 1-\left[\frac{\log\left(x\right)-4}{2\log\left(x\right)}+\frac{1}{\pi}{\displaystyle \int\limits _{0}^{1}}\frac{1-2t}{2\pi t(t-1)}+\frac{1}{\pi}\log\left(\frac{1-t}{xt}\right)\,dt\right]^{-1}
\\ & \sim1-\left[\frac{\log\left(x\right)-4}{2\log\left(x\right)}+\frac{1}{\pi}{\displaystyle \int\limits _{0}^{1}}\frac{1}{\pi}\log\left(\frac{1-t}{xt}\right)\,dt\right]^{-1} \\ & \sim 1-\left[\frac{\log\left(x\right)-4}{2\log\left(x\right)}-\frac{\log\left(x\right)}{\pi^{2}}\right]^{-1} \end{align} $$
then
\begin{equation}
f^{-1}(x)\sim\frac{\pi^{2}\left(4+\log\left(x\right)\right)+2\log^{2}\left(x\right)}{\pi^{2}\left(4-\log\left(x\right)\right)+2\log^{2}\left(x\right)}\quad\textrm{if}\,\,x\rightarrow1
\end{equation}
For example, for $x=1.01$ the inverse gives us
\begin{equation}
x=1.004987551798...
\end{equation}
and the approach
\begin{equation}
x=\color{red} {1.0049875}47346...
\end{equation}
Ref:
-E. E. Burniston, C.E. Siewert. The use of Riemann problems in solving a class of transcendental equations. Mathematical Proceedings of the Cambridge Philosophical Society. 73. 111 - 118. (1973).
-Henrici P., Applied and computational complex analysis, Volume III. Wiley, New York. 183-191 (1986).