For context,yesterday I asked How to determine $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4,\Gamma_5$?.
Now I learned of new theorem that made me curious:
Theorem:
Let $m,n \in \mathbb{Z}$ such that $gcd(m,n)=1$. Then the map $\Omega: \Gamma_n \times \Gamma_m \rightarrow \Gamma_{nm}, (\chi,\chi') \mapsto \chi \chi'$ is a (group)- isomorphism.
In How to determine $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4,\Gamma_5$? we determined $\Gamma_3$ and $\Gamma_5$.
Now given $\Gamma_3$ and $\Gamma_5$ the Theorem mentioned should make it possible to calculate $\Gamma_{15}$ in an easy way.
I did calculate $\Gamma_3$ and $\Gamma_5$ explicitly and here are the values:
For $\Gamma_3$ we get the following table:
$\begin{matrix} \Gamma_3 & k=1 & k=2 \\ \chi_0(k) &1 & 1\\ \chi_1(k) & 1 & -1 \end{matrix}$
and for $\Gamma_5$ we get this table ( I denote the elements of $\Gamma_5$ as $\Psi$ for better readability):
$\begin{matrix} \Gamma_5 & k=1 & k=2 & k=3 & k=4\\ \Psi _0(k) & 1& 1 & 1 & 1\\ \Psi _1(k)& 1 & -1 &-1 &1 \\ \Psi _2(k)& 1& i& i &-1 \\ \Psi _3(k)& 1 & -i &i & -1 \end{matrix}$.
I will denote the elements of $\Gamma_{15}$ as $\Phi$. $(\mathbb{Z}/15\mathbb{Z})^{\times}=\{1,2,4,7,8,11,13,14\}$.
Now since $gcd(3,5)=1$, the map $\Omega: (\chi,\Psi) \mapsto \chi \cdot \Psi=\Phi$ is an Isomorphism. And we can calculate the table
$\begin{matrix} \Gamma_3 \times \Gamma_5 & k=(1,1) & k=(1,2) &k=(1,3) &k=(1,4) &k=(2,1) & k=(2,2) & k=(2,3) & k=(2,4)\\ \chi_0 \cdot \Psi_0& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ \chi_0 \cdot \Psi_1& 1 & -1 & -1 & 1 & 1 & -1 & -1 &1 \\ \chi_0 \cdot \Psi_2& 1 & i &i & -1 & 1 & i & i & -1\\ \chi_0 \cdot \Psi_3& 1 & -i & i & -1 & 1 & -i & i & -1 \\ \chi_1 \cdot \Psi_0& 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1\\ \chi_1 \cdot \Psi_1& 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1\\ \chi_1 \cdot \Psi_2 & 1 & i & i & -1 & -1 & -i & -i & 1 \\ \chi_1 \cdot \Psi_3& 1 & -i & i & -1 & -1 & i & -i & 1 \end{matrix}$
My only problem now is that in this table we have the values for $k=(1,1),(1,2),(1,3)$,.... and so on. Instead I would like to have the proper values for $k$ regarding $\Gamma_{15}$ i.e. $k=1,2,4,7,8,11,13,14$.
The Question now is, how can I assign those tupels $(k_1,k_2)$ to it's corresponding elements (in $(\mathbb{Z}/15\mathbb{Z})^{\times}$)?