Doing the same as @GEdgar in comments, consider the partial sums
$$S_p(a)=\sum_{n=0}^p \frac 1{(8n+a)^3}=\frac{\psi
^{(2)}\left(p+1+\frac{a}{8}\right)-\psi
^{(2)}\left(\frac{a}{8}\right)}{1024}$$
Compute
$$A_p=S_p(1)+S_p(3)-S_p(5)-S_p(7)$$ and use the expansion
$$\psi^{(2)}(q)=-\frac 1 {q^2}-\frac 1 {q^3}-\frac{1}{2 q^4}+O\left(\frac{1}{q^6}\right)$$
This would give
$$A_p=\frac{-\psi
^{(2)}\left(\frac{1}{8}\right)-\psi
^{(2)}\left(\frac{3}{8}\right)+\psi
^{(2)}\left(\frac{5}{8}\right)+\psi
^{(2)}\left(\frac{7}{8}\right)}{1024
}-\frac{1}{512 p^3}+O\left(\frac{1}{p^4}\right)$$ Now, use
$$\psi ^{(2)}\left(\frac{7}{8}\right)-\psi ^{(2)}\left(\frac{1}{8}\right)=4 \left(4+3 \sqrt{2}\right) \pi ^3$$
$$\psi ^{(2)}\left(\frac{5}{8}\right)-\psi ^{(2)}\left(\frac{3}{8}\right)=4 \left(3 \sqrt{2}-4\right) \pi ^3$$
So
$$A_p=\frac{3 \pi ^3}{64 \sqrt{2}}-\frac{1}{512 p^3}+O\left(\frac{1}{p^4}\right)$$
Edit for your curiosity
Using
$$c_n=\sin \left(\frac{\pi n}{2}\right)+\cos
\left(\frac{\pi n}{2}\right)$$ ans special function the result write also
$$\frac {(1+i)}{16} \left(\Phi
\left(-i,3,\frac{1}{2}\right)-i\, \Phi
\left(i,3,\frac{1}{2}\right)\right)$$ where $\Phi(.)$ is the Lerch transcendent function.