I assume you're using the definition $$K(k) = \int_{0}^{\pi/2} \frac{\mathrm d \theta}{\sqrt{1-k^{2} \sin (\theta)}}. $$
Contour integration shows that $$\int_{0}^{1} K(k)^{2} \, \mathrm dk + \int_{1}^{\infty} \left(\frac{1}{k} \, K \left(\frac{1}{k} \right)+ i K(\sqrt{1-k^{2}}) \right)^{2} \, \mathrm dk - i \int_{0}^{\infty}K(ik)^2 \, \mathrm dk = 0.$$
This equation is obtained by integrating the principal branch of $K(k)^2$ around the indented quarter-circle contour $$[0,1-\epsilon] \cup \epsilon e^{i[\pi, o]} \cup [1+ \epsilon, R] \cup Re^{i [0, \pi/4}] \cup [iR, 0],$$ where the integration on $[1+ \epsilon, R]$ is on the upper side of the branch cut.
See this related answer for more details. Notice that I'm using the definition $$K(m) = \int_{0}^{\pi/2} \frac{\mathrm d \theta}{\sqrt{1-m \sin^{2}(\theta)}}$$ in that other answer. That's the definition that Mathematica/WolframAlpha uses.
Equating the real parts on both sides of the equation, we have $$ \begin{align} 0 &= \int_{0}^{1} K(k)^{2} \, \mathrm dk + \int_{1}^{\infty} \frac{1}{k^{2}} \, K \left(\frac{1}{k} \right)^{2} \, \mathrm dk - \int_{1}^{\infty} K \left(\sqrt{1-k^{2}} \right)^{2} \, \mathrm dk \\ &= \int_{0}^{1} K(k)^{2} \, \mathrm dk + \int_{0}^{1} K(u)^{2} \, \mathrm du - \int_{0}^{1} \left( \frac{1}{u} \, K \left(\sqrt{1-\frac{1}{u^{2}}}\right) \right)^{2} \, \mathrm du \\ & \overset{\clubsuit}{=} 2 \int_{0}^{1} K(k)^{2} \, \mathrm dk - \int_{0}^{1} K \left(\sqrt{1-u^{2}} \right)^{2} \, \mathrm du. \end{align} $$
Therefore, $$\int_{0}^{1} K(k)^{2} \mathrm dk = \frac{1}{2} \int_{0}^{1} K \left(\sqrt{1-u^{2}} \right)^{2} \, \mathrm du. $$
$\clubsuit$ See $\spadesuit$ in my previous answer.
Integrating $K(k)^3$ around the same contour shows that $$\int_{0}^{1} (k+1) K(k)^{3} \, \mathrm dk = 3 \int_{0}^{1} k K(k) K \left(\sqrt{1-k^{2}} \right)^{2} \, \mathrm dk. $$