I found this puzzle some time ago on the Internet. Triangle $ABC$ is like on the picture:
where $AD$ is an altitude. One need to find angle $ECA$. How to solve it?
Insane attempt:
- $\left|\angle EBD\right|=39^\circ, \left|\angle DEB\right|=51^\circ$
- Set $\left|AB\right|=1, \left|\angle ECA\right|=\alpha$
- $\left|BD\right|=\sin{33^\circ}, \left|AD\right|=\cos{33^\circ}$
- $\left|ED\right|=\sin{33^\circ}\cdot \tan{39^\circ}$
- $\left|DC\right|=\cos{33^\circ}\cdot \tan{15^\circ}$
- $\tan{\left(75^\circ-\alpha\right)}=\frac{\sin{33^\circ}\cdot\tan{39^\circ}}{\cos{33^\circ}\cdot\tan{15^\circ}}=\frac{\tan{33^\circ}\cdot\tan{39^\circ}}{\tan{15^\circ}}$
- $\alpha=75^\circ-\tan^{-1}{\left( \frac{\tan{33^\circ}\cdot\tan{39^\circ}}{\tan{15^\circ}} \right)}$
- After proving (I wasn't able to) that $\tan{33^\circ}\cdot\tan{39^\circ} = \tan{15^\circ}\cdot\tan{63^\circ}$ we are getting $\alpha=12^\circ$
Alternative question would be: How to prove $\tan{33^\circ}\cdot\tan{39^\circ} = \tan{15^\circ}\cdot\tan{63^\circ}$?

