Here is my solution.
Let $f(a) = \sum_{k =0}^{n}{a+k \choose a}x^k$
$xf(a) = \sum_{k =0}^{n}{a+k \choose a}x^{k+1}$
$(1-x)f(a)= \sum_{k =0}^{n}{a+k \choose a}x^k - \sum_{k =0}^{n}{a+k \choose a}x^{k+1}$
$= 1 + \sum_{k =1}^{n}{a+k \choose a}x^k - \sum_{k =0}^{n}{a+k \choose a}x^{k+1}$ (Note k starts from 1 in the first summation.)
$= 1 + \sum_{k =1}^{n}{a+k \choose a}x^k - \sum_{k =1}^{n+1}{a+k-1 \choose a}x^{k}$ (Note some manipulations the second summation .)
$= 1 + \sum_{k =1}^{n}{a+k \choose a}x^k - \sum_{k =1}^{n}{a+k-1 \choose a}x^{k}-{{a+n}\choose a} x^{n+1}$
$= 1 + \sum_{k =1}^{n}\left({a+k \choose a}-{a+k-1 \choose a}\right)x^k -{{a+n}\choose a} x^{n+1}$
$=1 + \sum_{k =1}^{n}{a+k-1 \choose a-1}x^k -{{a+n}\choose a} x^{n+1}$ (because $\left({a+k \choose a}-{a+k-1 \choose a}\right) = {a+k-1 \choose a-1}$)
$=\sum_{k =0}^{n}{a+k-1 \choose a-1}x^k -{{a+n}\choose a} x^{n+1}$
$= f(a-1) - {{a+n}\choose a} x^{n+1}$
Then we have
$f(a) = \frac{1}{1-x} f(a-1) - {{a+n}\choose a} \frac{x^{n+1}}{1-x}$
$= \frac{1}{1-x} f(a-1) - {{a+n}\choose n} \frac{x^{n+1}}{1-x}$
Expand this,
$f(a) = \frac{1}{1-x} \left(\frac{1}{1-x} f(a-2) - {{a-1+n}\choose n} \frac{x^{n+1}}{1-x}\right) - {{a+n}\choose n} \frac{x^{n+1}}{1-x}$
$=\frac{1}{(1-x)^2}f(a-2)- {{a-1+n}\choose n}\frac{x^{n+1}}{(1-x)^2}- {{a+n}\choose n} \frac{x^{n+1}}{1-x} $
$=\ ...$
$=\frac{1}{(1-x)^a}f(0)- {{1+n}\choose n} \frac{x^{n+1}}{(1-x)^a} - {{2+n}\choose n} \frac{x^{n+1}}{(1-x)^{a-1}} - ... - {{a+n}\choose n} \frac{x^{n+1}}{1-x}$
$= \frac{1}{(1-x)^a}f(0) - x^{n+1}\sum_{k = 1}^{a}{{a+n+1-k} \choose n} \frac{1}{(1-x)^k}$
Now we have $f(0) = \sum_{k=0}^{n}x^k= \frac{1-x^{n+1}}{1-x}$,
$\sum_{k =0}^{n}{a+k \choose a}x^k=f(a) = \frac{1-x^{n+1}}{(1-x)^{a+1}} - x^{n+1}\sum_{k = 1}^{a}{{a+n+1-k} \choose n} \frac{1}{(1-x)^k}$
I've done simple verifications as follows.
Let $a = 2, n = 2$,
$f(2) = 1 + 3x + 6x^2$ (by plugging in the original form.)
$f(2) = \frac{1-x^{3}}{{(1-x)}^3}- x^{3}\sum_{k = 1}^{2}{{5-k} \choose 2} \frac{1}{(1-x)^k}$ (by plugging in the derived result.)
$= \frac{1+x+x^2}{(1-x)^2}- x^3\left(\frac{6}{1-x} + \frac{3}{(1-x)^2} \right)$
$=\frac{6x^4 - 9x^3+x^2+x+1}{(1-x)^2}$
$=1 + 3x + 6x^2$
An obvious bound:
For $0<x<1, \sum_{k =0}^{n}{a+k \choose a}x^k <\frac{1-x^{n+1}}{(1-x)^{a+1}}$.
Another bound:
For $0<x<1, \sum_{k =0}^{n}{a+k \choose a}x^k <\frac{1-x^{n+1}}{(1-x)^{a+1}}-x^{n+1}\sum_{k = 1}^{a}\frac{1}{(1-x)^k}= \frac{1-x^{n+1}}{(1-x)^{a+1}} - x^n \left((1-x)^{-a}-1\right)$ (by sum of geometric sequence.)
Finally given that ${a+n+1-k} \choose n$ appears in the result, we can derive more interesting bounds based on results of the bounds of general ${n \choose k}$. Some discussions are found here