Can anyone help me please :(
Calculate the surface integral of the $2$nd type: $$ \iint_S \dfrac{x^2\,dy\,dz + y^2\,dz\,dx + z^2\,dx\,dy}{x^3+y^3+z^3} $$ where $S$ is the outer side of a sphere $x^2+y^2+z^2=3$.
Can anyone help me please :(
Calculate the surface integral of the $2$nd type: $$ \iint_S \dfrac{x^2\,dy\,dz + y^2\,dz\,dx + z^2\,dx\,dy}{x^3+y^3+z^3} $$ where $S$ is the outer side of a sphere $x^2+y^2+z^2=3$.
The vector field $$ \boldsymbol{F}=\frac1{x^3+y^3+z^3}\pmatrix{x^2\\y^2\\z^2} $$ is parallel to the unit outward normal at the sphere $$ \boldsymbol{n}=\frac1{\sqrt{x^2+y^2+z^2}}\pmatrix{x\\y\\z} $$ and $$ \boldsymbol{F}\cdot\boldsymbol{n}=\frac1{\sqrt{x^2+y^2+z^2}}=\frac1r\,. $$ Therefore, \begin{align} &\int_S\frac{x^2\,dy\wedge dz+y^2\,dz\wedge dx+z^2\,dx\wedge dy}{x^3+y^3+z^3} &=\int_S\boldsymbol{F}\cdot\boldsymbol{n}\,dS=\frac1r (4\pi r^2)=4\pi r\,. \end{align}
Alternatively, you can go the hard way and take spherical polar coordinates. This leads to
\begin{align*} &\int_S\frac{x^2}{x^3+y^3+z^3}\,dy\wedge dz=r\int_0^{2\pi}\int_0^{\pi}\frac{\cos^3\varphi\sin^4\theta}{\cos^3\varphi\sin^3\theta+\sin^3\varphi\sin^3\theta+\cos^3\theta}\,d\theta\,d\varphi\,,\\[2mm] &\int_S\frac{y^2}{x^3+y^3+z^3}\,dz\wedge dx=r\int_0^{2\pi}\int_0^{\pi}\frac{\sin^3\varphi\sin^4\theta}{\cos^3\varphi\sin^3\theta+\sin^3\varphi\sin^3\theta+\cos^3\theta}\,d\theta\,d\varphi\,,\\[2mm] &\int_S\frac{z^2}{x^3+y^3+z^3}\,dx\wedge dy=r\int_0^{2\pi}\int_0^{\pi}\frac{\cos^3\theta\sin\theta}{\cos^3\varphi\sin^3\theta+\sin^3\varphi\sin^3\theta+\cos^3\theta}\,d\theta\,d\varphi\,. \end{align*} The sum of these integrals is $$ r\int_0^{2\pi}\int_0^{\pi}\sin\theta\,d\theta\,d\varphi=r4\pi\,. $$