Let $a \in \mathbb R$ and $x_0=a$ $$ x_{n+1}=3 -\frac{2}{x_n} $$
Find the limit for different values of $a$.
I see that if there is limit then it will be $1$ or $2$
Also, if $a=1$ then $(x_n)=(1,1,1,...) \to 1 $
if $a=2$ then $(x_n)=(2,2,2,...) \to 2 $
$ if a=0 \Rightarrow x_1 \notin \mathbb R \Rightarrow a \neq 0 $
if $ a > 2$
$x_2=3-\frac{2}{a}>3-1=2$
let $x_{n-1}>2$ then
$ x_n=3-\frac{2}{x_{n-1}} \ge 3-1=2$
then by induction $\forall n \in \mathbb N , x_n \ge2$
$\forall n \in \mathbb N $
$x_{n+1} -x_n= 3 -\frac{2}{x_n} -x_n= - \frac {{x_n}^2-3x_n+2}{x_n} =- \frac{(x-2)(x-1)}{x_n} < 0 $
Then $(x_n)$ is decreasing sequence. So the limit is exists and it's 2.
Also, if $1<a<2 $
$x_2=3-\frac{2}{a} \le 3-1=2$
let $x_{n-1} \le2$ then
$ x_n=3-\frac{2}{x_{n-1}} \le 3-1=2$
then by induction $\forall n \in \mathbb N , x_n<2$
$\forall n \in \mathbb N $
$x_{n+1} -x_n= 3 -\frac{2}{x_n} -x_n= - \frac {{x_n}^2-3x_n+2}{x_n}=- \frac{(x-2)(x-1)}{x_n} > 0 $
Then $(x_n)$ is increasing sequence. So the limit is exists and it's 2.
Now I need to find the limit for $a<1$
I tried to prove that but I couldn't. I tried to calculate some numerical examples for this case and I find the limit is 2 for theses examples and $ \exists n_0 \in \mathbb N : \forall n> n_0, (x_n)$ is a decreasing sequence and $ \forall n> n_0, x_n \ge 2 $
and its limit is 2. I tried to prove that but I can't. Any help?
$$a \in \left{0, \cfrac23, \cfrac{2}{3-\cfrac23}, \cfrac{2}{3-\cfrac{2}{3-\cfrac23}}, \cfrac{2}{3-\cfrac{2}{3-\cfrac{2}{3-\cfrac23}}}, \ldots\right}$$
– peterwhy Jun 12 '24 at 17:58$$\left(-\infty, 0\right], \left(0, \cfrac23\right], \left(\cfrac23, \cfrac{2}{3-\cfrac23}\right], \left(\cfrac{2}{3-\cfrac23}, \cfrac{2}{3-\cfrac{2}{3-\cfrac23}}\right], \ldots$$
Then $x_n$ in one interval means $x_{n+1}$ is in the previous interval. Eventually a later term $x_m \in (-\infty, 0]$, then $x_{m+1}$ either increases to $>3$ or is undefined.
– peterwhy Jun 12 '24 at 20:52