So, I want to believe that there is a theorem like so:
$$∀ m. \int_{−∞}^{+∞} f (x + m) \, \mathrm{d}x = \int_{−∞}^{+∞} f (x) \, \mathrm{d}x$$
proof by infinity
Assume $∀ x. ∞ + x = ∞$.
$$\int_{−∞}^{+∞} f (x + m) \, \mathrm{d}x \overset{\text{substitution}}= \int_{−∞ + m}^{+∞ + m} f (x) \, \mathrm{d}x \overset{\text{assumption}}= \int_{−∞}^{+∞} f (x) \, \mathrm{d}x$$
∎ Slick! But $∞$ is not a real number. I wonder if this can be formalized with some fancy «extended real numbers» kind of theory.
proof by principal value
Assume $∀ m. \lim_{a \to ∞}\int_{a − m}^{a + m} f (x) \, \mathrm{d}x = 0$.
$$\begin{align} &\int_{−∞}^{+∞} f (x + m) \, \mathrm{d}x\\ \small{\text{(principal value)}}= \lim_{a \to ∞}&\int_{−a}^{+a} f (x + m) \, \mathrm{d}x\\ \small{\text{(substitution)}}= \lim_{a \to ∞}&\int_{−a + m}^{+a + m} f (x) \, \mathrm{d}x\\ \small{\text{(split at $a − m$)}}= \lim_{a \to ∞}&\int_{−(a − m)}^{+(a - m)} f (x) \, \mathrm{d}x + \int_{a − m}^{a + m} f (x) \, \mathrm{d}x\\ \small{\text{(linearity of limit)}}= \lim_{a \to ∞}&\int_{−(a − m)}^{+(a - m)} f (x) \, \mathrm{d}x + \lim_{a \to ∞}\int_{a − m}^{a + m} f (x) \, \mathrm{d}x\\ \small{\text{(assumption)}}= \lim_{a \to ∞}&\int_{−(a − m)}^{+(a - m)} f (x) \, \mathrm{d}x\\ \small{\text{(principal value)}}= &\int_{−∞}^{+∞} f (x) \, \mathrm{d}x\\ \end{align}$$
∎ Nice! And it is plausible that a bounded function with finite total weight will have infinitely light tails. But how do I formalize this?
my question
So, for which $f$ is the above statement true? Is there a standard reference?
I found something called Glasser's master theorem, but it is formulated differently in different sources so I am not sure if it applies. I have no idea how to prove it anyway.