Given $\Delta ABC, \Delta A'B'C'$ s.t $\widehat{BAC}=\widehat{B'A'C'}, BC=B'C', AD=A'D'$ $(AD, A'D'$ are internal bisectors of $\widehat{BAC}, \widehat{B'A'C'}$ respectively).
Prove that $\Delta ABC=\Delta A'B'C'$.
My attempt:
Let $E\in\vec{AB}, F\in\vec{AC}$ s.t $AE=A'B', AF=A'C'$.
Then $\Delta AEF=\Delta A'B'C'\Rightarrow EF=B'C'$.
On the other hand $\Delta AED=\Delta A'B'D'\Rightarrow ED=B'D'$. Similarly, $DF=D'C'$.
So, $ED+DF=B'D'+D'C'=B'C'=EF\Rightarrow E,D,F$ are collinear and $D$ is between $E,F$.
I'm stuck here :( . Could someone help me? Here's a picture:
Thanks in advance.
