If you are interested in using complex integration, the solution to a more general sum can be found (the solutions in the links do not use such approach).
Let's consider
$$S(a)=\sum_{m=1}^\infty\frac{\cos(km)}{m^2+a^2}=\frac12\sum_{m=-\infty;\,m\neq0}^\infty\frac{e^{ikm}}{m^2+a^2}$$
and the function
$$f(z)=\frac{2\pi i}{e^{2\pi iz}-1}\frac{e^{ikz}}{z^2+a^2},\quad k\in[0;2\pi]$$
We integrate this function along a big circle $C_R$ in the complex plane (radius $R\to\infty$). We choose the radius in such a way to avoid "dangerous" points $z=0,\pm1,\pm2,...$, choosing, for example $R_n=n+\frac12;\, n=1,2,3, ...\to\infty$.
Then
$$\oint_{C_R}f(z)dz=2\pi i\left(\underset{z=\pm1;\pm2;...}{\operatorname{Res}}\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}+\underset{z=0}{\operatorname{Res}}\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}+\underset{z=\pm ia}{\operatorname{Res}}\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}\right)$$
For $z$ on this big circle and $k\in[0;2\pi]\,\,\big|\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}\big|<\big|\frac{const}{z^2+a^2}\big|$
As $\oint_{C_R}\frac{dz}{z^2+a^2}\to 0$ at $R_n\to\infty$, and using
$$\underset{z=\pm1;\pm2;...}{\operatorname{Res}}\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}=2S(a)$$
we get
$$\oint_{C_R}f(z)dz\to0=2S(a)+\underset{z=0}{\operatorname{Res}}\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}+\underset{z=\pm ia}{\operatorname{Res}}\frac{2\pi i\,e^{ikz}}{e^{2\pi iz}-1}\frac1{z^2+a^2}$$
$$\Rightarrow 2S(a)=\frac\pi a\left(\frac{e^{ka}}{e^{2\pi a}-1}-\frac{e^{-ka}}{e^{-2\pi a}-1}\right)-\frac1{a^2}$$
$$\boxed{\,\,S(a)=\sum_{m=1}^\infty\frac{\cos(km)}{m^2+a^2}=\frac\pi {2a}\frac{\cosh a(k-\pi)}{\sinh \pi a}-\frac1{2a^2}\,\,}$$
Leading $a\to0$
$$S=S(0)=\frac{(k-\pi)^2}4-\frac{\pi^2}{12}=\frac{k^2}4-\frac{\pi k}2+\frac{\pi^2}6;\quad k\in[0;2\pi]$$
If we want to consider $k$ on the interval $[-2\pi;2\pi]$, the answer is
$$S=\frac{k^2}4-\frac{\pi |k|}2+\frac{\pi^2}6;\quad k\in[-2\pi;2\pi]$$
as @Gonçalo explained in his post.