Find $$ \lim_{(x,y) \to (0,0)} \frac{xy^2}{|x| + |y|}. $$
Attempt:
Putting $x = r\cos\theta,\; y = r\sin\theta$, $$ \lim_{(r, \theta) \to (0,0)} \frac{r^2 \sin^2\theta \cos\theta}{|\cos\theta| + |\sin\theta|} \leq \lim_{(r, \theta) \to (0,0)} \frac{r^2}{|\cos\theta| + |\sin\theta|} = 0 \qquad (?) $$
Please solve this question. Is the above approach correct?
Edit:
$$ \lim_{r\to 0} \frac{r^2 \sin^2\theta \cos\theta}{|\cos\theta| + |\sin\theta|} \leq \lim_{r\to 0} \frac{r^2}{|\cos\theta| + |\sin\theta|} = 0 $$