2

Question: How to evaluate $$\int_{0}^{\pi/2} \ln \left( \frac{2 + \sin x}{2 - \sin x} \right) \, dx$$

My attempt

The original integral is: $$ J = \int_{0}^{\pi/2} \ln \left( \frac{2 + \sin x}{2 - \sin x} \right) \, dx $$

Using the substitution $y = \tan\left(\frac{x}{2}\right)$, we have: $$ \sin x = \frac{2y}{1 + y^2}, \quad dx = \frac{2 \, dy}{1 + y^2} $$

The integral becomes: \begin{align*} J &= \int_{0}^{1} \ln \left( \frac{2 + \frac{2y}{1 + y^2}}{2 - \frac{2y}{1 + y^2}} \right) \cdot \frac{2 \, dy}{1 + y^2} \\ &= \int_{0}^{1} \ln \left( \frac{2 \left( 1 + \frac{y}{1 + y^2} \right)}{2 \left( 1 - \frac{y}{1 + y^2} \right)} \right) \cdot \frac{2 \, dy}{1 + y^2} \\ &= \int_{0}^{1} \ln \left( \frac{\frac{2y^2 + 2y + 2}{1 + y^2}}{\frac{2y^2 - 2y + 2}{1 + y^2}} \right) \cdot \frac{2 \, dy}{1 + y^2} \\ &= \int_{0}^{1} \ln \left( \frac{y^2 + y + 1}{y^2 - y + 1} \right) \cdot \frac{2 \, dy}{1 + y^2} \end{align*}

Rewriting as a sum of integrals: $$ \int_{0}^{1} \ln \left( \frac{y^2 + ay + 1}{y^2 - ay + 1} \right) \cdot \frac{2 \, dy}{1 + y^2} $$

Splitting into parts: $$ = \int_{0}^{1} \int_{0}^{1} \left( \frac{y}{y^2 + ay + 1} + \frac{y}{y^2 - ay + 1} \right) \cdot \frac{2 \, da \, dy}{1 + y^2} $$

Combining \begin{align*} = \int_{0}^{1} \int_{0}^{1} \frac{4y \, da \, dy}{(y^2 + ay + 1)(y^2 - ay + 1)} \\ \end{align*}

maybe we can simplify the terms and get two different arctan integrals, but that doesn't seem like a good way to evaluate the integral. I tried simplifying the integral, and it resulted in two arctan integrals in my mind, so it might be incorrect.

edit: Thanks to Princess Eev for the link, but I'm actually interested in how to pick up where I left off. This isn't a duplicate question at all.

edit 2: Why was my question closed? Can someone explain? My main question is how to evaluate the last double integral.

  • 1
    @PrincessEev thanks a lot for the link, still I am interested in evaluation of $\int_{0}^{1} \int_{0}^{1} \frac{4y , da , dy}{(y^2 + ay + 1)(y^2 - ay + 1)} $ – Martin.s May 25 '24 at 05:20
  • @Martin.s Doing the integral over $y$ first, I'm left with an integral which (after some substitutions) eventually becomes $2\int_{0}^{\frac{\pi}{6}}\mathrm{d}\varphi,\varphi\csc{\left(\varphi\right)}$. This leads into a solution by Clausen functions.... but now it's starting to feel like we went in one big circle because if we were gonna resort to Clausen functions, we could have just used them to integrate $\ln \left( \frac{2 + \sin x}{2 - \sin x} \right)$ directly. =/ – David H May 25 '24 at 07:12

3 Answers3

7

$$I=\int_{0}^{1} \int_{0}^{1} \frac{4y }{(y^2 + ay + 1)(y^2 - ay + 1)} \, dy \, da$$ $$J=\int_{0}^{1} \frac{4y }{(y^2 + ay + 1)(y^2 - ay + 1)} \, dy=\frac 2 a \int_0^1 \Bigg(\frac{1}{y^2-a y+1}-\frac{1}{y^2+a y+1} \Bigg)\,dy$$ $$J=\frac{4 \left(2 \tan ^{-1}\left(\frac{a}{\sqrt{4-a^2}}\right)-\tan ^{-1}\left(\frac{a+2}{\sqrt{4-a^2}}\right)+\csc ^{-1}\left(\frac{2}{\sqrt{2-a}}\right)\right)}{a \sqrt{4-a^2}}=\color{red}{\frac{4 \sin ^{-1}\left(\frac{a}{2}\right)}{a \sqrt{4-a^2}}}$$

$$I=\int_0^1 \frac{4 \sin ^{-1}\left(\frac{a}{2}\right)}{a \sqrt{4-a^2}}\,da=2\int_0^{\frac \pi 6} t \csc (t)\,dt=\color{red}{\frac{8 }{3}C-\frac{\pi}{3} \cosh ^{-1}(2)}$$

All the trick is the simplifcation at the third lien.

5

Ramanujan found that

$$\int_{0}^{\pi/2} \ln \left( \frac{2 + \sin x}{2 - \sin x} \right) \, dx \, = \, \color{blue}{\displaystyle\sum_{n=0}^\infty \displaystyle\frac{1}{\displaystyle\binom{2n}{n}\left(2n+1\right)^2}} \, = \,\boxed{\displaystyle\frac{8C-\pi\ln\left(2+\sqrt{3}\right)}{3}}$$

where $C$ is Catalan's constant.


The first few terms are:

$$\int_{0}^{\pi/2} \ln \left( \frac{2 + \sin x}{2 - \sin x} \right) \, dx \, = \, 1 + \frac{1}{18}+\frac{1}{150}+\frac{1}{980} + \cdots$$

The denominators are listed in OEIS sequence A294486.

This series can also be expressed as the value of a hypergeometric function: $$_3F_2\left(1,1, \frac{1}{2}\, ;\,\,\frac{3}{2}, \frac{3}{2}\, ; \,\,\frac{1}{4}\right)$$

3

Too long for comment:


This is more of an aside rather than a full solution to the problem. It turns out your integral has a natural expression as a special value of the inverse tangent integral function, and I thought you might find that interesting:

$$\begin{align} \mathcal{I} &=\int_{0}^{1}\mathrm{d}y\int_{0}^{1}\mathrm{d}x\,\frac{4y}{\left(y^{2}-xy+1\right)\left(y^{2}+xy+1\right)}\\ &=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\,\frac{4y}{\left(y^{2}-xy+1\right)\left(y^{2}+xy+1\right)}\\ &=\int_{0}^{1}\mathrm{d}x\int_{1}^{0}\mathrm{d}t\,\frac{(-2)}{\left(1+t\right)^{2}}\cdot\frac{4\left(\frac{1-t}{1+t}\right)}{\left[\left(\frac{1-t}{1+t}\right)^{2}-x\left(\frac{1-t}{1+t}\right)+1\right]\left[\left(\frac{1-t}{1+t}\right)^{2}+x\left(\frac{1-t}{1+t}\right)+1\right]};~~~\small{\left[y=\frac{1-t}{1+t}\right]}\\ &=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\,\frac{8\left(1-t^{2}\right)}{\left[\left(1-t\right)^{2}-x\left(1-t^{2}\right)+\left(1+t\right)^{2}\right]\left[\left(1-t\right)^{2}+x\left(1-t^{2}\right)+\left(1+t\right)^{2}\right]}\\ &=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\,\frac{8\left(1-t^{2}\right)}{\left[2\left(1+t^{2}\right)-x\left(1-t^{2}\right)\right]\left[2\left(1+t^{2}\right)+x\left(1-t^{2}\right)\right]}\\ &=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\,\frac{8\left(1-t^{2}\right)}{\left[\left(2-x\right)+\left(2+x\right)t^{2}\right]\left[\left(2+x\right)+\left(2-x\right)t^{2}\right]}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\frac{8\left(1-t^{2}\right)}{\left[\left(2-x\right)+\left(2+x\right)t^{2}\right]\left[\left(2+x\right)+\left(2-x\right)t^{2}\right]}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{\frac12}\mathrm{d}u\,\frac{4\left(1-t^{2}\right)}{\left[\left(1-u\right)+\left(1+u\right)t^{2}\right]\left[\left(1+u\right)+\left(1-u\right)t^{2}\right]};~~~\small{\left[x=2u\right]}\\ &=\int_{0}^{1}\mathrm{d}t\int_{\frac13}^{1}\mathrm{d}v\,\frac{2\left(1-t^{2}\right)}{\left(v+t^{2}\right)\left(1+vt^{2}\right)};~~~\small{\left[u=\frac{1-v}{1+v}\right]}.\\ \end{align}$$

Then,

$$\begin{align} \mathcal{I} &=\int_{\frac13}^{1}\mathrm{d}v\int_{0}^{1}\mathrm{d}t\,\frac{2\left(1-t^{2}\right)}{\left(v+t^{2}\right)\left(1+vt^{2}\right)}\\ &=\int_{\frac13}^{1}\mathrm{d}v\int_{0}^{1}\mathrm{d}t\,\frac{2}{\left(1-v\right)}\left[\frac{1}{v+t^{2}}-\frac{1}{1+vt^{2}}\right]\\ &=\int_{\frac13}^{1}\mathrm{d}v\,\frac{2}{\left(1-v\right)}\left[\int_{0}^{1}\mathrm{d}t\,\frac{1}{v+t^{2}}-\int_{0}^{1}\mathrm{d}t\,\frac{1}{1+vt^{2}}\right]\\ &=\int_{\frac13}^{1}\mathrm{d}v\,\frac{2}{\left(1-v\right)}\left[\int_{0}^{\frac{1}{\sqrt{v}}}\mathrm{d}x\,\frac{\sqrt{v}}{v+vx^{2}}-\frac{1}{\sqrt{v}}\int_{0}^{\sqrt{v}}\mathrm{d}x\,\frac{1}{1+x^{2}}\right]\\ &=\int_{\frac13}^{1}\mathrm{d}v\,\frac{2}{\left(1-v\right)\sqrt{v}}\left[\int_{0}^{\frac{1}{\sqrt{v}}}\mathrm{d}x\,\frac{1}{1+x^{2}}-\int_{0}^{\sqrt{v}}\mathrm{d}x\,\frac{1}{1+x^{2}}\right]\\ &=\int_{\frac13}^{1}\mathrm{d}v\,\frac{2}{\left(1-v\right)\sqrt{v}}\left[\arctan{\left(\frac{1}{\sqrt{v}}\right)}-\arctan{\left(\sqrt{v}\right)}\right]\\ &=\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}w\,\frac{4}{1-w^{2}}\left[\arctan{\left(\frac{1}{w}\right)}-\arctan{\left(w\right)}\right];~~~\small{\left[\sqrt{v}=w\right]}\\ &=\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}w\,\frac{4}{1-w^{2}}\left[\frac{\pi}{2}-2\arctan{\left(w\right)}\right]\\ &=\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}w\,\frac{8}{1-w^{2}}\left[\frac{\pi}{4}-\arctan{\left(w\right)}\right]\\ &=\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}w\,\frac{8}{1-w^{2}}\arctan{\left(\frac{1-w}{1+w}\right)}\\ &=4\int_{0}^{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\mathrm{d}x\,\frac{\arctan{\left(x\right)}}{x};~~~\small{\left[w=\frac{1-x}{1+x}\right]}\\ &=4\int_{0}^{\tan{\left(\frac{\pi}{12}\right)}}\mathrm{d}x\,\frac{\arctan{\left(x\right)}}{x}\\ &=4\operatorname{Ti}_{2}{\left(\tan{\left(\frac{\pi}{12}\right)}\right)}.\\ \end{align}$$


David H
  • 32,536