Using the Chain Rule in Matrix Calculus is difficult because it requires the calculation of higher-order tensors as intermediate quantities.
Differentials offer an alternative approach, one which doesn't need these awkward quantities. The differential of a matrix behaves just like a matrix. In particular, it obeys all of the rules of Matrix Algebra.
$
\def\k{\otimes}
\def\o{{\tt1}}
\def\BR#1{\left[#1\right]}
\def\LR#1{\left(#1\right)}
\def\op#1{\operatorname{#1}}
\def\Unvc#1{\op{Unvec}\LR{#1}}
\def\vc#1{\op{vec}\LR{#1}}
\def\tr#1{\op{Tr}\LR{#1}}
\def\frob#1{\left\| #1 \right\|_F}
\def\q{\quad} \def\qq{\qquad}
\def\qif{\q\iff\q} \def\qiq{\q\implies\q}
\def\p{\partial} \def\grad#1#2{\frac{\p #1}{\p #2}}
\def\red#1{\color{red}{#1}}
\def\green#1{\color{green}{#1}}
\def\blue#1{\color{blue}{#1}}
\def\RLR#1{\red{\LR{#1}}}
\def\fracLR#1#2{\LR{\frac{#1}{#2}}}
\def\gradLR#1#2{\LR{\grad{#1}{#2}}}
$Note that the linked result for the gradient of the nuclear norm was for a $\sf Real$ matrix.
Below is the calculation for a $\sf Complex$ matrix.
The double-dot $(:)$ product is extremely useful. It has the following properties
$$\eqalign{
A:B &= \sum_{i=1}^m\sum_{j=1}^n A_{ij}B_{ij} \;=\; \tr{A^TB} \\
B^*:B &= \frob{B}^2 \qquad \{ {\rm Frobenius\;norm} \}\\
A:B &= B:A \;=\; B^T:A^T \\
\LR{XY}:B &= X:\LR{BY^T} \;=\; Y:\LR{X^TB} \\
}$$
The nuclear norm of $G$ is the trace of the square root of $F=G^HG$
$$\eqalign{
\def\G{\|G\|_*}
\G &= \tr{F^{1/2}} \\
d\,\G
&= \tfrac12\LR{F^T}^{-1/2}:dF \\
&= \tfrac12\LR{G^TG^*}^{-1/2}:\LR{G^HdG+dG^HG} \\
&= {\tfrac12G^*\LR{G^TG^*}^{-1/2}}:dG
\;+\; \red{\tfrac12G\LR{G^HG}^{-1/2}}:dG^* \\
&\equiv\, M^*:dG \;+\; \red{M}:dG^* \\
&=\,M^*:dG \;+\; conjugate \\
}$$
The next step is to calculate the differential of $G$ wrt $Z$
$$\eqalign{
G = BA\green{Z} - B\green{Z}A \qiq
dG \:=\: {BA\:\green{dZ} - B\:\green{dZ}\,A} \\
}$$
Substituting this into the previous result yields
$$\eqalign{
d\,\G
&= M^*:\LR{BA\,dZ - B\,dZ\,A} \;&+\; conjugate \\
&= \LR{A^TB^TM^*- B^TM^*A^T}:dZ \;&+\; conjugate \\
&= \LR{A^HB^HM-B^HMA^H}^*:dZ \;&+\; conjugate \\
}$$
from which the Wirtinger gradients can be identified as
$$\eqalign{
\grad{\G}{Z} &= \LR{A^HB^HM-B^HMA^H}^* \\\\
\grad{\G}{Z^*} &= \LR{A^HB^HM - B^HMA^H} \\
&= \BR{\frac{A^HB^H{G\LR{G^HG}^{-1/2}} - B^H{G\LR{G^HG}^{-1/2}}A^H}2}
}$$
Although it wasn't part of this question, for a rectangular matrix there are two different ways to write $M$ depending on whether $G$ is tall/skinny or short/fat
$$\eqalign{
\tfrac12G\LR{G^HG}^{-1/2} \q{\sf or}\q \tfrac12\LR{GG^H}^{-1/2}G
}$$