Let $1\leq p<q<r<\infty$ and $f\in L ^p(\Omega)\cap L^r(\Omega)$. Then for $a=\frac{\frac{1}{p}-\frac{1}{q}}{\frac{1}{q}-\frac{1}{r}}$ and $c>0$ the inequaltiy
$$\|f\|_q\leq c\|f\|_r+\frac{1}{c^a}\|f\|_p$$
holds.
I think I need to use the Young inequality to prove the desired inequality. However, I'm not sure how to choose the powers most skillfully. In particular, the q-th root at the beginning is giving me difficulty. I would appreciate any hints!
Edit using Umberto's suggestion:
For $\dfrac 1 q = \dfrac \lambda p + \dfrac{1-\lambda}r$ one gets
$$\dfrac 1 p-\dfrac 1 q=(1-\lambda)\left(\dfrac 1 p -\dfrac 1 r\right)$$
$$\dfrac 1 q-\dfrac 1 r=\lambda\left(\dfrac 1 p -\dfrac 1 r\right).$$
It follows that $a=\frac{1-\lambda}{\lambda}$ holds.
Using Young's inequality for $p=\frac{1}{\lambda}$ and $q=\frac{1}{1-\lambda}$
$$\|f\|_q\leq \|f\|_p^{\lambda}\cdot\|f\|_r^{1-\lambda}
=\epsilon\|f\|_p^{\lambda}\cdot\frac{1}{\epsilon}\|f\|_r^{1-\lambda}\leq \lambda \epsilon^{\frac{1}{\lambda}}\|f\|_p+(1-\lambda)\left(\frac{1}{\epsilon}\right)^{\frac{1}{1-\lambda}}\|f\|_r.$$
Choosing $\epsilon=\left(\frac{1}{\lambda}c\right)^{\lambda}$:
$$\|f\|_q\leq c\|f\|_p+(1-\lambda)\left(\frac{1}{\lambda}c\right)^{a^{-1}}\|f\|_r.$$
Since the exponent of $c$ and the factor of $\|f\|_r$ are not right: Am I missing something?