Recently, I was requested to evaluate an integral
$$\int_0^{\infty} \frac{\left(\sqrt x-1\right)^2}{\left(x^2+1\right) \ln ^2x} d x.$$ I then try to use the Feynman’s trick by considering the parametrised integral $$ I(a)=\int_0^{\infty} \frac{\left(x^a-1\right)^2}{\left(x^2+1\right) \ln ^2 x} d x $$ then differentiation w.r.t. $a$ once and twice yields $$ \begin{aligned} I^{\prime}(a) & =\int_0^{\infty} \frac{2\left(x^a-1\right) x^a}{\left(x^2+1\right) \ln x} d x \\ I^{\prime \prime}(a) & =2 \int_0^{\infty} \frac{2 x^{2 a}-x^a}{x^2+1} d x \\ & =4 \int_0^{\infty} \frac{x^{2 a}}{x^2+1} d x-2 \int_0^{\infty} \frac{x^a}{x^2+1} d x \\ & =\pi\left[2 \sec (\pi a)-\sec \left(\frac{\pi a}{2}\right)\right] \end{aligned} $$ Integrating back from $x=0$ to $a$ gives $$ \begin{aligned} I^{\prime}(a)= & \pi \int_0^a\left[2 \sec (\pi x)-\sec \left(\frac{\pi x}{2}\right)\right] d x \\ = & 2\left[\ln (\sec (\pi x)+\tan (\pi x)) -\ln \left(\sec \left(\frac{\pi x}{2}\right)+\tan \left(\frac{\pi x}{2}\right) \right)\right]_0^a\\=& 2 \ln \left(\frac{\sec (\pi a)+\tan (\pi a)}{\sec \left(\frac{\pi a}{2}\right)+\tan \left(\frac{\pi a}{2}\right)}\right) \end{aligned} $$ and $$ \begin{aligned} \int_0^{\infty} \frac{(\sqrt{x}-1)^2}{\left(x^2+1\right) \ln ^2 x} d x& =I\left(\frac{1}{2}\right)-I(0) \\ & =2 \int_0^{\frac{1}{2}} \ln \left(\frac{\sec (\pi a)+\tan (\pi a)}{\sec \left(\frac{\pi a}{2}\right)+\tan \left(\frac{\pi a}{2}\right)}\right) d a\\&= \frac{1}{\pi}\left[2 \int_0^{\frac{\pi}{2}} \ln (\sec x+\tan x) d x -4 \int_0^{\frac{\pi}{4}} \ln (\sec x+\tan x) d x\right]\\ \end{aligned} $$
$$ \begin{aligned} \int_0^{\frac{\pi}{2}} \ln (\sec x+\tan x) d x = & \int_0^{\frac{\pi}{2}} \ln (1+\sin x) d x-\int_0^{\frac{\pi}{2}} \ln (\cos x) d x \\ = & \int_0^{\frac{\pi}{2}} \ln (1+\cos x) d x+\frac{\pi}{2} \ln 2 \\ = & \int_0^{\frac{\pi}{2}} \ln \left(2 \cos ^2 \frac{x}{2}\right) d x+\frac{\pi}{2} \ln 2 \\ = & \frac{\pi}{2} \ln 2+4 \int_0^{\frac{\pi}{4}} \ln \cos x d x+\frac{\pi}{2} \ln 2 \\ = & \frac{\pi}{2} \ln 2+2 G-\pi \ln 2+\frac{\pi}{2} \ln 2 \\ = & 2 G \end{aligned} $$
$$ \begin{aligned}\int_0^{\frac{\pi}{4}} \ln (\sec x+\tan x) d x = & {[x \ln (\sec x+\tan x)]_0^{\frac{\pi}{4}} } -\int_0^{\frac{\pi}{4}} x \cdot \frac{\sec x \tan x+\sec x}{\sec x+\tan x} d x \\ = & \frac{\pi}{4} \ln (\sqrt{2}+1)-\int_0^{\frac{\pi}{4}} \frac{x}{\cos x} d x \end{aligned} $$ By the post,we can conclude that $$\int_0^{\infty} \frac{\left(\sqrt x-1\right)^2}{\left(x^2+1\right) \ln ^2x} d x = \frac{4}{\pi}\left[G-\frac{\pi}{4} \ln (\sqrt{2}+1) +\frac{\pi}{2} i \tan ^{-1}\left(\frac{1}{\sqrt{2}}(1+i)\right)-i\left(\operatorname{Li_2}\left( \frac{1}{\sqrt{2}}(1-i)\right)-\operatorname{Li_2}\left( \frac{1}{\sqrt{2}}(-1+i)\right)\right) +i\left(\operatorname{Li_2}(-i)-\operatorname{Li_2}(i)\right) \right] $$
My Question:
Is there other method to get a nicer answer for the integral $\int_0^{\infty} \frac{\left(\sqrt x-1\right)^2}{\left(x^2+1\right) \ln ^2x} d x $ ?