In György Steinbrecher’s and William Shaw’s Quantile mechanics $(47)$ to $(51)$, it can be found that:
$$\begin{aligned}y\left(y’’+\frac{1-p}vy’\right)-(y+1-p)y’^2=0,y(0)=0,y (0)=1\iff (1-p)y’^2=\frac{1-p}vyy’+yy’’-yy’^2\\\implies y(v)=\sum_{n=1}^\infty a_n v^n,n(n+p)a_n=\sum_{k=1}^n\sum_{j=1}^{n-k+1}a_ka_ja_{n-k-j+2}j(n-k-j+2)-\Delta(n)\sum_{k=2}^n a_ka_{n-k+2}k(k-p+(p-1)(n-k+2)),a_1=1,\Delta(n)=\begin{cases}0,&n<2\\1,&n\ge2\end{cases}\end{aligned}$$
Appendix A $(93)$ to $(97)$ gives steps for finding the non linear recurrence. First, one substitutes in the power series:
$$\begin{aligned}y=\sum_{n=1}^\infty a_n x^n:(1-p)\sum_{n=1}^\infty a_n n v^{n-1}\sum_{k=1}^\infty a_k k v^{k-1}=\frac{1-p}v\sum_{s=1}^\infty a_sv^s\sum_{q=1}^\infty a_q q v^{q-1}+\sum_{s=1}^\infty a_s v^s\sum_{q=1}^\infty a_qq(q-1)v^{q-2}-\sum_{s=1}^\infty a_sv^s\sum_{q=1}^\infty a_q q v^{q-1}\sum_{r=1}^\infty a_rrv^{r-1}\\\implies \sum_{n=1}^\infty\sum_{k=1}^\infty (1-p)a_na_knkv^{n+k-2}=\sum_{s=1}^\infty\sum_{q=1}^\infty a_sa_qq(q-p)v^{s+q-2}-\sum_{s=1}^\infty\sum_{q=1}^\infty\sum_{r=1}^\infty a_sa_qa_rqrv^{s+q+r-2}\end{aligned}$$
and equates $v$’s powers using Kronecker delta.
$$\mathop\implies^?\sum_{k=1}^\infty (1-p)a_na_knk=\sum_{s=1}^\infty\sum_{q=1}^\infty a_sa_qq(q-p)\delta_{n+k-2,s+q-2}-\sum_{s=1}^\infty\sum_{q=1}^\infty\sum_{r=1}^\infty a_sa_qa_rqr\delta_{n+k-2,s+q+r-2} $$
However, it is not clear how to do this, so we stop. The $(1-p)y’^2$, a product of $2$ functions, makes one equate a double sum’s terms. The final result will have $a_n$ in terms of a single and a double sum implying that both $\sum_\limits{n=1}^\infty\sum\limits_{k=1}^\infty$ disappear. Maybe a modified differential equation was used.
How could the blockquoted recurrence relation have been derived?