The size of $H$ depends on the number of prime factors of $n$. If $n=p_1\cdots p_r$, with $p_1\lt p_2\lt\cdots\lt p_r$ distinct primes, then $|H|=2^r$ if $p_1\neq 2$, and $|H|=2^{r-1}$ if $p_1=2$. In other words, the formula is, using your notation,
$$|H| = 2^{r-[2\mid n]},$$
where $r$ is the number of distinct primes that divide $n$.
By the Chinese Remainder Theorem, we know that
$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1\mathbb{Z})\times\cdots\times (\mathbb{Z}/p_r\mathbb{Z}).$$
Let $\gcd(k,n)=t$, and let $I$ be the indices $i$, $1\leq i\leq r$, such that $p_i\mid t$. Then if $x\in \mathbb{Z}/n\mathbb{Z}$, we have that the projection of $kx$ in the $p_j$th factor is $0$ if and only if either $j\in I$, or else if both $j\notin I$ and $x\equiv 0\pmod{p_j}$.
So let $u_1,u_2\in H$. Then $ku_1\equiv ku_2\pmod{n}$ if and only if $u_1\equiv u_2\pmod{p_j}$ for all $j\notin I$.
Consider first the case where $2\nmid n$. Let $s=r-|I|$. For each $j\notin I$, pick $a_j\in\{\pm 1\}$. Then all $u\in H$ with $u\equiv a_j\pmod{p_j}$, $j\notin I$, are mapped to the same element by the function $x\mapsto kx$, and these are all the elements of $H$ mapped to that image. So we get one distinct image for each such choice, and those are all the images. There are $2^s$ choices, so $|kH|=2^s$ in this case.
If $2\mid n$, then it doesn't matter whether $2\mid t$ or not, since any two $u\in H$ have the same image when projected to the $\mathbb{Z}/2\mathbb{Z}$. So proceeding as above, we need to make selections in $r-|I|$ components if $2\mid \gcd(n,k)$, and in $r-(|I|+1)$ if $2\nmid\gcd(n,k)$. So let $s=r-(|I|+1-[2\mid\gcd(n,k)])$. Then $kH$ will have $2^s$ elements.
So we want $2^{r-|I|}$ when $2\nmid n$, and we want $2^{r-|I|}$ if $2\mid \gcd(n,k)$, and $2^{r-(|I|+1)}$ if $2\mid n$ but $2\nmid k$. This amounts to $2^{r-(|I|+[2\mid n]-[2\mid \gcd(n,k)]}$.
So:
Let $n$ be a squarefree integer, and let $H$ consist of the elements of $(\mathbb{Z}/n\mathbb{Z})$ whose square is $1$.
Let $r$ be the number of distinct prime factors of $n$; then $|H|=2^{r-[2\mid n]}$.
Given $k$, let $u$ be the number of distinct prime factors of $\gcd(k,n)$, and let
$s=
r-(u+[2\mid n]-[2\mid \gcd(n,k)])$. Then $|kH| = 2^s$, with each fiber of the same size.
Example. Let $n=2\times 3\times 5\times 7= 210$, and let $k=20$. Then $r=4$, so $|H|=2^{4-[2\mid 210]} = 2^3 = 8$. Indeed,
$$H=\{1, 29, 41, 71, 139, 169, 181, 209\}.$$
$\gcd(k,n) = \gcd(20,210) = 10 = 2\times 5$, so $I=\{2,5\}$, hence $s=4-(|I|+[2\mid 210]-[2\mid \gcd(210,20)]) = 4-(2+1-1) = 2$. So the claim is that $kH$ has exactly $2^s = 2^2=4$ elements, hence each fiber has $2$ elements (that is, each image is achieved twice). Indeed,
$$\begin{align*}
20H &= \{20\bmod 210,580\bmod 210,820\bmod 210,1420\bmod 210,\\
&\qquad\qquad2780\bmod 210,3380\bmod 210,3620\bmod 210,4180\bmod 210\} \\
&= \{20, 160, 190, 160, 50, 20, 50, 190\} = \{20, 50, 160,190\}.
\end{align*}$$
Now, if $k=63=3^2\times 7$ instead, so $\gcd(n,k)=21$, we have $u=2$, $[2\mid n]=1$ and $[2\mid\gcd(k,n)]=0$, so $s=4-(2+1-0) = 1$. So now the claim is that the image has exactly $2^1=2$ elements. Indeed,
$$\begin{align*}
63H &= \{63\bmod 210, 1827\bmod 210,2583\bmod 210,4473\bmod 210,8757\bmod 210,\\
&\qquad\qquad 10647\bmod 210,11403\bmod 210,13167\bmod 210\}\\
&=\{63, 147, 63, 63, 63, 147, 147, 63, 147\} = \{63,147\}.
\end{align*}$$