This may be a slight duplicate but I am trying to show $T$ is the zero (linear) operator if $\langle T(x), x\rangle = 0$ $\forall x \in V$ where V is a complex inner product space.
I am using the Polarisation identity on $\langle T(x), y\rangle$ to show it must be $0$ but I always get a circular answer and am looking for help where I am going wrong please.
Given $x$, $y$ $\in V$
$ \langle T(x), y\rangle = {\rm Re}(\langle T(x), y\rangle ) + i\, {\rm Im}(\langle T(x), y\rangle )$
${\rm Re}( \langle T(x), y\rangle ) = \frac{1}{4}\cdot[\,||T(x) + y||^2 - ||T(x) - y||^2]$
Which, after tidying
$= \frac{1}{2}\cdot[\, \langle T(x), y\rangle + \langle y, T(x)\rangle ]$
Likewise,
${\rm Im}( \langle T(x), y\rangle ) = \frac{1}{4}\cdot[\,||T(x) + iy||^2 - ||T(x) - iy||^2]$
$= \frac{1}{2}\cdot[\, -i\,\langle T(x), y\rangle + i\,\langle y, T(x)\rangle ]$
$\therefore\, i\cdot\,{\rm Im}( \langle T(x), y\rangle ) = \frac{1}{2}\cdot[\, \,\langle T(x), y\rangle - \,\langle y, T(x)\rangle ]$
So adding these gives me back $\langle T(x), y\rangle$ when I wanted 0.
$\frac{1}{4}\cdot [<T(x+y), x+y> + i\cdot<T(x+iy), x+iy>]$ So, $<T(x+y), x+y> = <T(x), y> + <T(y), x>$ And, $i\cdot<T(x+iy), x+iy> = <T(x), y> - <T(y), x>$
which gives me a non-zero answer. Am I allowed to just use the fact because $<T(x), x> = 0$, $<T(x+y), x+y> = 0$ because $x+y \in V$, therefore T is the zero operator?
– number8 May 03 '24 at 09:17