Where is the error in evaluating this integration? $$\int^{\infty}_{-\infty} \frac{(-1)^{2x}}{(1+x^2)^2} dx$$
I know $$(-1)^{2x}=1$$
therfore: $$I=\int^{\infty}_{-\infty} \frac{(-1)^{2x}}{(1+x^2)^2} dx=\int^{\infty}_{-\infty} \frac{1}{(1+x^2)^2} dx=\frac{\pi}{2}$$
But using wolfram alpha $$I = 0.0213... $$