This is true.
In the one-dimensional case the transformation between the two types of integrals is, as we know,
$$
\underbrace{\int_0^tY_s\circ\,dW_s}_{\text{Stratonovich}}=\underbrace{\int_0^tY_s\,dW_s}_{\text{Ito}}+\tfrac{1}{2}\langle W,Y\rangle_t\,.
$$
In particular,
- the quadratic covariation of any process $Z$ with a Stratonovich integral is the same as the quadratic covariation of $Z$ with the corresponding Ito integral.
In your case
$$
Y_i(t)=(\sigma X(t))_i=\sum_{j=1}^n\sigma_{ij}X_j(t)\,,\quad\langle W,Y_i\rangle_t=\sum_{j=1}^n\sigma_{ij}\langle W,X_j\rangle_t\,.
$$
Using the above bullet point and bilinearity of the covariation,
\begin{align}
\langle W,X_j\rangle_t&=\left\langle W,\int_0^.\sum_{k=1}^n\sigma_{jk}X_k(s)\circ\,dW_s\right\rangle=\sum_{k=1}^n\sigma_{jk}\left\langle W,\int_0^.X_k(s)\,dW_s\right\rangle_t\\[2mm]
&=\sum_{k=1}^n\sigma_{jk}\int_0^tX_k(s)\,ds\,.
\end{align}
This shows
\begin{align}
dX_i(t)=\sum_{j=1}^n\sigma_{ij} X_j(t)\circ dW_t=\sum_{j=1}^n\sigma_{ij} X_j(t)\,dW_t+\frac12\sum_{j,k=1}^n\sigma_{ij}\,\sigma_{jk}X_k(t)\,dt\,.
\end{align}
In shorter matrix/vector notation this is the formula you wrote at the end of OP.