I have an atlas $\{(U_1,\phi_1),(U_2,\phi_2)\}$ for $\mathbb{S}^1.$
$$U_1:=\{(Cos(2\pi t),Sin(2\pi t))|t \in (0,1)\},\\ \phi_1((Cos(2\pi t),Sin(2\pi t)):=t\in (0,1)\\ U_2:=\{(Cos(2\pi t),Sin(2\pi t))| t \in (-\frac{1}{2},\frac{1}{2})\}, \phi_2((Cos(2\pi t),Sin(2\pi t)):=t\in (-\frac{1}{2},\frac{1}{2}). $$
I am looking for an example of smooth (if possible) partition of unity $\{\alpha_{i}\}_{i \in \{1,2\}}$ over $\mathbb{S}^1$ such that $\alpha_1$ and $\alpha_2$ have compact support in $U_1$ and $U_2$, respectively.